28 research outputs found

    Non-Apical Membrane Antigen 1 (AMA1) IgGs from Malian Children Interfere with Functional Activity of AMA1 IgGs as Judged by Growth Inhibition Assay

    Get PDF
    BACKGROUND: Apical membrane antigen 1 (AMA1) is one of the best-studied blood-stage malaria vaccine candidates. When an AMA1 vaccine was tested in a malaria naΓ―ve population, it induced functionally active antibodies judged by Growth Inhibition Assay (GIA). However, the same vaccine failed to induce higher growth-inhibitory activity in adults living in a malaria endemic area. Vaccination did induce functionally active antibodies in malaria-exposed children with less than 20% inhibition in GIA at baseline, but not in children with more than that level of baseline inhibition. METHODS: Total IgGs were purified from plasmas collected from the pediatric trial before and after immunization and pools of total IgGs were made. Another set of total IgGs was purified from U.S. adults immunized with AMA1 (US-total IgG). From these total IgGs, AMA1-specific and non-AMA1 IgGs were affinity purified and the functional activity of these IgGs was evaluated by GIA. Competition ELISA was performed with the U.S.-total IgG and non-AMA1 IgGs from malaria-exposed children. RESULTS: AMA1-specific IgGs from malaria-exposed children and U.S. vaccinees showed similar growth-inhibitory activity at the same concentrations. When mixed with U.S.-total IgG, non-AMA1 IgGs from children showed an interference effect in GIA. Interestingly, the interference effect was higher with non-AMA1 IgGs from higher titer pools. The non-AMA1 IgGs did not compete with anti-AMA1 antibody in U.S.-total IgG in the competition ELISA. CONCLUSION: Children living in a malaria endemic area have a fraction of IgGs that interferes with the biological activity of anti-AMA1 antibody as judged by GIA. While the mechanism of interference is not resolved in this study, these results suggest it is not caused by direct competition between non-AMA1 IgG and AMA1 protein. This study indicates that anti-malaria IgGs induced by natural exposure may interfere with the biological effect of antibody induced by an AMA1-based vaccine in the target population

    Immunogenicity of Self-Associated Aggregates and Chemically Cross-Linked Conjugates of the 42 kDa Plasmodium falciparum Merozoite Surface Protein-1

    Get PDF
    Self-associated protein aggregates or cross-linked protein conjugates are, in general, more immunogenic than oligomeric or monomeric forms. In particular, the immunogenicity in mice of a recombinant malaria transmission blocking vaccine candidate, the ookinete specific Plasmodium falciparum 25 kDa protein (Pfs25), was increased more than 1000-fold when evaluated as a chemical cross-linked protein-protein conjugate as compared to a formulated monomer. Whether alternative approaches using protein complexes improve the immunogenicity of other recombinant malaria vaccine candidates is worth assessing. In this work, the immunogenicity of the recombinant 42 kDa processed form of the P. falciparum merozoite surface protein 1 (MSP142) was evaluated as a self-associated, non-covalent aggregate and as a chemical cross-linked protein-protein conjugate to ExoProtein A, which is a recombinant detoxified form of Pseudomonas aeruginosa exotoxin A. MSP142 conjugates were prepared and characterized biochemically and biophysically to determine their molar mass in solution and stoichiometry, when relevant. The immunogenicity of the MSP142 self-associated aggregates, cross-linked chemical conjugates and monomers were compared in BALB/c mice after adsorption to aluminum hydroxide adjuvant, and in one instance in association with the TLR9 agonist CPG7909 with an aluminum hydroxide formulation. Antibody titers were assessed by ELISA. Unlike observations made for Pfs25, no significant enhancement in MSP142 specific antibody titers was observed for any conjugate as compared to the formulated monomer or dimer, except for the addition of the TLR9 agonist CPG7909. Clearly, enhancing the immunogenicity of a recombinant protein vaccine candidate by the formation of protein complexes must be established on an empirical basis

    Impact on Malaria Parasite Multiplication Rates in Infected Volunteers of the Protein-in-Adjuvant Vaccine AMA1-C1/Alhydrogel+CPG 7909

    Get PDF
    BACKGROUND: Inhibition of parasite growth is a major objective of blood-stage malaria vaccines. The in vitro assay of parasite growth inhibitory activity (GIA) is widely used as a surrogate marker for malaria vaccine efficacy in the down-selection of candidate blood-stage vaccines. Here we report the first study to examine the relationship between in vivo Plasmodium falciparum growth rates and in vitro GIA in humans experimentally infected with blood-stage malaria. METHODS: In this phase I/IIa open-label clinical trial five healthy malaria-naive volunteers were immunised with AMA1/C1-Alhydrogel+CPG 7909, and together with three unvaccinated controls were challenged by intravenous inoculation of P. falciparum infected erythrocytes. RESULTS: A significant correlation was observed between parasite multiplication rate in 48 hours (PMR) and both vaccine-induced growth-inhibitory activity (Pearson rβ€Š=β€Š-0.93 [95% CI: -1.0, -0.27] Pβ€Š=β€Š0.02) and AMA1 antibody titres in the vaccine group (Pearson rβ€Š=β€Š-0.93 [95% CI: -0.99, -0.25] Pβ€Š=β€Š0.02). However immunisation failed to reduce overall mean PMR in the vaccine group in comparison to the controls (vaccinee 16 fold [95% CI: 12, 22], control 17 fold [CI: 0, 65] Pβ€Š=β€Š0.70). Therefore no impact on pre-patent period was observed (vaccine group median 8.5 days [range 7.5-9], control group median 9 days [range 7-9]). CONCLUSIONS: Despite the first observation in human experimental malaria infection of a significant association between vaccine-induced in vitro growth inhibitory activity and in vivo parasite multiplication rate, this did not translate into any observable clinically relevant vaccine effect in this small group of volunteers. TRIAL REGISTRATION: ClinicalTrials.gov [NCT00984763]

    Strong correlation between anti-AMA1 antibody level and the growth-inhibitory activity in AMA1-specific IgGs.

    No full text
    <p>Anti-AMA1(3D7) (A) or anti-AMA1(FVO) (B) antibody levels (Β΅g/ml) in the GIA well (<i>x</i>-axis) are plotted against % inhibition (<i>y</i>-axis) of <i>P. falciparum</i> 3D7 (A) or FVO (B) parasites. Each AMA1-specific IgG was tested at three (for U.S. IgGs) or two (for Mali IgGs) different concentrations. All responses below the limit of detection in ELISA were assigned a value of 2 Β΅g/ml for the analysis.</p
    corecore