282 research outputs found
The onset of the permo-carboniferous glaciation: Reconciling global stratigraphic evidence with biogenic apatite δ18O records in the late Visean
The δ18O values of phosphatic microfossils recovered from NW Ireland are used to determine the timing and magnitude of cooling associated with the onset of the Carboniferous glaciation. Microfossil fish δ18Oapatite demonstrates a +2.4‰ (V-SMOW) shift, which, once corrected for δ18Oseawater changes owing to evolving ice volumes, equates to an approximate 4.5°C reduction in equatorial sea surface temperature between the earliest Asbian and the mid-Brigantian (late Visean). Both conodont and microfossil fish δ18Oapatite indicate stabilization of an ‘icehouse’ climate during the Brigantian and into the Serpukhovian. Substantial late Visean cooling identified herein is in good agreement with global glacioeustatic records
A 560 yr summer temperature reconstruction for the Western Mediterranean basin based on stable carbon isotopes from <i>Pinus nigra</i> ssp. <i>laricio</i> (Corsica/France)
The Mediterranean is considered as an area which will be affected strongly by current climate change. However, temperature records for the past centuries which can contribute to a better understanding of future climate changes are still sparse for this region. Carbon isotope chronologies from tree-rings often mirror temperature history but their application as climate proxies is difficult due to the influence of the anthropogenic change in atmospheric CO<sub>2</sub> on the carbon isotope fractionation during photosynthetic CO<sub>2</sub> uptake. We tested the influence of different correction models accounting for plant response to increased atmospheric CO<sub>2</sub> on four annually resolved long-term carbon isotope records (between 400 and 800 yr) derived from Corsican pine trees (<i>Pinus nigra</i> ssp. <i>laricio</i>) growing at ecologically varying mountain sites on the island of Corsica. The different correction factors have only a minor influence on the main climate signals and resulting temperature reconstructions. Carbon isotope series show strong correlations with summer temperature and precipitation. A summer temperature reconstruction (1448–2007 AD) reveals that the Little Ice Age was characterised by low, but not extremely low temperatures on Corsica. Temperatures have been to modern temperatures at around 1500 AD. The reconstruction reveals warm summers during 1480–1520 and 1950–2007 AD and cool summers during 1580–1620 and 1820–1890 AD
Sequence stratigraphy, chemostratigraphy and facies analysis of Cambrian Series 2 – Series 3 boundary strata in northwestern Scotland
Globally, the Series 2 – Series 3 boundary of the Cambrian System coincides with a major carbon isotope excursion, sea-level changes and trilobite extinctions. Here we examine the sedimentology, sequence stratigraphy and carbon isotope record of this interval in the Cambrian strata (Durness Group) of NW Scotland. Carbonate carbon isotope data from the lower part of the Durness Group (Ghrudaidh Formation) show that the shallow-marine, Laurentian margin carbonates record two linked sea-level and carbon isotopic events. Whilst the carbon isotope excursions are not as pronounced as those expressed elsewhere, correlation with global records (Sauk I – Sauk II boundary and Olenellus biostratigraphic constraint) identifies them as representing the local expression of the ROECE and DICE. The upper part of the ROECE is recorded in the basal Ghrudaidh Formation whilst the DICE is seen around 30m above the base of this unit. Both carbon isotope excursions co-occur with surfaces interpreted to record regressive–transgressive events that produced amalgamated sequence boundaries and ravinement/flooding surfaces overlain by conglomerates of reworked intraclasts. The ROECE has been linked with redlichiid and olenellid trilobite extinctions, but in NW Scotland, Olenellus is found after the negative peak of the carbon isotope excursion but before sequence boundary formation
Assessing the fidelity of marine vertebrate microfossil δ18O signatures and their potential for palaeo-ecological and -climatic reconstructions
Conodont biogenic apatite has become a preferred analytical target for oxygen isotope studies investigating ocean temperature and palaeoclimate changes in the Palaeozoic. Despite the growing application in geochemically-based palaeoenvironmental reconstructions, the paucity or absence of conodont fossils in certain facies necessitates greater flexibility in selection of robust oxygen-bearing compounds for analysis. Vertebrate microfossils (teeth, dermal denticles, spines) offer a potential substitute for conodonts from the middle Palaeozoic. Vertebrate bioapatite is particularly advantageous given a fossil record extending to the present with representatives across freshwater to fully marine environments, thus widening the scope of oxygen isotope studies on bioapatite. However, significant tissue heterogeneity within vertebrates and differential susceptibility of these tissues to diagenetic alteration have been raised as potential problems affecting the reliability of the oxygen isotope ratios as palaeoclimatic proxies. Well-preserved vertebrate microfossils and co-occurring conodont fossils from the Upper Devonian and Lower Carboniferous of the Lennard Shelf, Canning Basin, Western Australia, were analysed using bulk (gas isotope ratio mass spectrometry, GIRMS) and in-situ (secondary ion mass spectrometry, SIMS) methodologies, with the latter technique allowing investigation of specific tissues within vertebrate elements. The d18Oconodont results may be interpreted in terms of palaeolatitudinally and environmentally sensible palaeo-salinity and -temperature and provide a baseline standard for comparison against vertebrate microfossil d18O values. Despite an absence of obvious diagenetic modification, GIRMS of vertebrate denticles yielded d18O values depleted in 18O by 2–4‰ relative to co-occurring conodonts. SIMS analysis of dentine tissues exhibited significant heterogeneity, while hypermineralised tissues in both scales and teeth produced d18O values comparable with those of associated conodonts. The susceptibility of permeable phosphatic fossil tissues to microbial activity, fluid interaction and introduction of mineral precipitates post-formation is demonstrated in the dentine of vertebrate microfossils, which showed significant heterogeneity and consistent depletion in 18O relative to conodonts. The hypermineralised tissues present in both teeth and scales appear resistant to many diagenetic processes and indicate potential for palaeoclimatic reconstructions and palaeoecological investigations
Ordovician climate changes in the northern subtropics: The δ18O record from the Tunguska Basin, Siberia
Oxygen isotopes from bioapatite (conodonts) have been used for several decades to reconstruct the Palaeozoic climate history. During the Ordovician, conodont-based δ18Ophos studies have revealed a general cooling trend throughout the system. The δ18Ophos data from Estonia confirm this long-term shift but also demonstrate that against the background of a generally cooling climate in the pre-Hirnantian, the Late Ordovician was quite unstable, with several episodes of sea surface temperature (SST) decrease and increase of different magnitude and duration. In the sedimentary sequence, these cooling events are reflected by major sea-level lowstands. Several of these are also recognizable in the Tunguska Basin of Siberia. We have recently studied the δ18Ophos record from two Middle and Upper Ordovician sections in Siberia. Comparisons of the results with data from the Baltic region have revealed differences but also some similarities in the δ18Ophos trends, even though these two regions were located on different palaeocontinents, Siberia and Baltica. Both were geographically separated and display different Early Palaeozoic histories with respect to their environmental conditions. Siberia was located in low equatorial latitudes from the Cambrian onwards and remained there through the Ordovician and Silurian, whereas Baltica drifted from high southern latitudes to low latitudes from the late Cambrian and reached the southern subtropics in the Late Ordovician (late Sandbianâearly Katian).
Despite Siberiaâs location at low northern subequatorial latitudes, the upper Middle (starting from the Darriwilian) and the Upper Ordovician in the Tunguska Basin are assumed to be represented by cool-water deposits (various calcareous siltstones with interbeds of micritic and/or bioclastic limestone). The onset of cool-water conditions is explained by plate-tectonic reorganization, resulting in the upwelling of cold oceanic waters along the southern margin of the palaeocontinent and their penetration into the epicontinental seas. Our δ18Ophos data generally fluctuate around 17.5â° (VSMOW), indicating that SST was relatively stable. This general state is interrupted by six cooling episodes, but unlike in Baltica, no general trend of SST change in any direction (decrease or increase) is evident. In the Baltic region, a general cooling trend prevailed, and SST decreased continuously during the pre-Hirnantian Late Ordovician. In addition to this general trend, seven cooling events (CE) are observed, named (from the oldest upwards) the Late Kukruse, Haljala, Keila, Early Nabala, Vormsi, Early Pirgu, and Middle Pirgu CEs. Comparison of the δ18Ophos curves from the Tunguska and Baltoscandian basins shows that five of these CEs are reflected by brief intervals of higher δ18Ophos values also in the former one. The Keila CE is identified in the lower Mangazea Formation (Fm), the Early Nabala CE in the upper Mangazea Fm, and the Vormsi CE in the uppermost Mangazea Fm. In addition, the Haljala CE probably corresponds to an interval in the lowermost Mangazea Fm and the Early Pirgu CE to a small δ18Ophos peak in the lowermost Dolbor Fm. The most pronounced CE in Siberia is recorded in the upper Darriwilian, in the lower UstâStolbovaya Fm, and apparently reflects the Middle-Darriwilian Ice Age. The recognition of the same CEs in successions on two different palaeocontinents is clear evidence that they are not some regional phenomena but the result of global climatic perturbations.
The recently acquired δ18Ophos data allow an improvement in the dating of the Siberian strata and their correlation with successions on other palaeocontinents. Previously, the MDICE, Upper Kukruse Low, GICE, and an interval probably including Rakvere (KOPE) and Saunja carbon isotopic events (CIE) were recognized in the Siberian δ13Ccarb record. Now, the position of the Keila CE just below an increase in δ13Ccarb in the Tunguska Basin confirms the identification of this CIE as GICE and allows the correlation of this level (lower Baksian Regional Stage) with the Keila Regional Stage in Estonia. In addition, the prolonged CIE between the Early Nabala and Vormsi CEs as identified in the Tunguska Basin apparently corresponds to the Saunja (Waynesville) CIE. This also means that the small peak in the δ13Ccarb curve below this CIE correlates with the Rakvere CIE
An abrupt extinction in the Middle Permian (Capitanian) of the Boreal Realm (Spitsbergen) and its link to anoxia and acidification
The controversial Capitanian (Middle Permian, 262 Ma) extinction event is only known from equatorial latitudes, and consequently its global extent is poorly resolved. We demonstrate that there were two, severe extinctions amongst brachiopods in northern Boreal latitudes (Spitsbergen) in the Middle to Late Permian, separated by a recovery phase. New age dating of the Spitsbergen strata (belonging to the Kapp Starostin Formation), using strontium isotopes and d13C trends and comparison with better-dated sections in Greenland, suggests that the first crisis occurred in the Capitanian. This age assignment indicates that this Middle Permian extinction is manifested at higher latitudes. Redox proxies (pyrite framboids and trace metals) show that the Boreal crisis coincided with an intensification of oxygen depletion, implicating anoxia in the extinction scenario. The widespread and near-total loss of carbonates across the Boreal Realm also suggests a role for acidification in the crisis. The recovery interval saw the appearance of new brachiopod and bivalve taxa alongside survivors, and an increased mollusk dominance, resulting in an assemblage reminiscent of younger Mesozoic assemblages. The subsequent end-Permian mass extinction terminated this Late Permian radiation
Ammonium ocean following the end-Permian mass extinction
The aftermath of end-Permian mass extinction was marked by a ~5 million year interval of poorly-understood, extreme environments that likely hindered biotic recovery. Contemporary nitrogen isotope variations are considered, using a new conceptual model, to support a scenario that shows intensive nitrate-removal processes gradually depleted the global oceanic nitrate inventory during long-lasting oceanic anoxia. Enhanced nitrogen fixation shifted the oceanic nitrogenous nutrient (nutrient-N) inventory to an ammonium dominated state. Ammonium is toxic to animals and higher plants but fertilizes algae and bacteria. This change in ocean chemistry could account for the intense and unexplained losses of nektonic taxa and the proliferation of microbial blooms in the Early Triassic. The transition from a nitrate ocean to an ammonium ocean was accompanied by a decrease in respiration efficiency of organisms and a shrinking oceanic nutrient-N inventory, ultimately leading to generally low productivity in the Early Triassic oceans. These unappreciated nutrient changes during episodes of prolonged ocean anoxia may be the key life-limiting factor at such times
Mineralogical, geochemical and isotopic features of tuffs from the CFDDP drill hole: Hydrothermal activity in the eastern side of the Campi Flegrei volcano (southern Italy)
Abstract A 506 m drill-hole has been recently drilled in the framework of the Campi Flegrei Deep Drilling Project (CFDDP) and the International Continental Scientific Drilling Program (ICDP) with the intention of coring the subsurface in the eastern sector of the Campi Flegrei caldera. The borehole, located in the western district of the Neapolitan city (Bagnoli Plain) 3 km to the east of the most active volcanic area and about 5 m above sea level, is now targeted for monitoring purposes. This paper reports the results obtained from the analysis of two short cores collected at depths of − 443 and − 506 m below the ground level. The cores sampled two pre-caldera tuffs. Observations performed by optical and scanning electron microscopy, energy dispersive spectroscopy and powder X-ray diffraction were used to achieve data on the primary lithology, both primary and secondary mineralogical assemblages, and the relationship between texture and secondary mineralization. Sr isotope ratios were determined on selected primary feldspars, whereas δ13C and δ18O analyses were performed on carbonates from veins and filled-voids in tuffs. Our results provide information on the hydrothermal system in the eastern sector of the caldera that was not among the goals in the previous drilling programs. Secondary mineralization suggests a saline hydrothermal environment characterized by fluids that progressively evolved from boiling toward more alkaline and cooler conditions. A paleo-temperature of ca. 160 °C has been inferred from authigenic mineral occurrences and calculated on the basis of equilibria between cored calcites and fluids presently emitted at the surface, by using carbon and oxygen isotope data. The temperature measured at the bottom of the drilling is about 80 °C
From Alpine-type sulfides to nonsulfides in the Gorno Zn project (Bergamo, Italy)
Recent exploration of the Gorno Zn-Pb-Ag deposit in northern Italy identified 3.3 Mt of sulfides at 4.9% Zn, 1.3% Pb, and 27.2 g/t Ag (indicated+inferred resources), and a further mineralized nucleus of mixed sulfides-nonsulfides in the Val Vedra area, currently under evaluation. The ores are hosted in Triassic limestone and shale. Sulfides (sphalerite, Ag-bearing galena, minor pyrite, and chalcopyrite) paragenetically follow Mn-Fe-bearing saddle dolomite and sparry calcite. The mineral association, and the carbon and oxygen isotope ratios of the sparry calcite (avg. δ13C = 1.0 ± 0.6‰ V-PDB; avg. δ18O = 19.63 ± 1.25‰ V-SMOW), are in agreement with precipitation from hydrothermal fluids in a deep burial setting. Sulfide emplacement occurred before the Alpine orogeny, likely during the Early-Middle Jurassic, in analogy to other Alpine-type deposits. The nonsulfide ore formed at the expense of sulfides, and mainly consists of smithsonite, hydrozincite, hemimorphite, and cerussite. The C-O-isotope values of the early generations of Zn-carbonates are characterized by δ18O between 24.1 and 26.8‰ V-SMOW and δ13C ratios between − 3.1 and 1.7‰ V-PDB. The later generations have lower δ18O (21.9 to 23.9‰) and lower δ13C (− 6.2 to − 3.9‰). These compositions, as those measured on cerussite (δ13C = −6.3 and − 7.7‰; δ18O = 14.0 and 15.3‰), agree with the formation of the nonsulfides in a supergene environment, under climatic conditions warmer than today. The δ18O decrease from early to late generations suggests progressive involvement of meteoric water sourced from higher altitudes. These characteristics indicate that the nonsulfides formed during the exhumation of the Gorno area from Miocene to Pliocene
- …