336 research outputs found

    Electron-Ion Interaction Effects in Attosecond Time-Resolved Photoelectron Spectra

    Get PDF
    Photoionization by attosecond (as) extreme ultraviolet (xuv) pulses into the laser-dressed continuum of the ionized atom is commonly described in strong-field approximation (SFA), neglecting the Coulomb interaction between the emitted photoelectron (PE) and residual ion. By solving the time-dependent Sch\"{o}dinger equation (TDSE), we identify a temporal shift δτ\delta \tau in streaked PE spectra, which becomes significant at small PE energies. Within an eikonal approximation, we trace this shift to the combined action of Coulomb and laser forces on the released PE, suggesting the experimental and theoretical scrutiny of their coupling in streaked PE spectra. The initial state polarization effect by the laser pulse on the xuv streaked spectrum is also examined.Comment: 9 pages, Accepted by Phys. Rev.

    Three-boson problem at low energy and Implications for dilute Bose-Einstein condensates

    Full text link
    It is shown that the effective interaction strength of three bosons at small collision energies can be extracted from their wave function at zero energy. An asymptotic expansion of this wave function at large interparticle distances is derived, from which is defined a quantity DD named three-body scattering hypervolume, which is an analog of the two-body scattering length. Given any finite-range interaction potentials, one can thus predict the effective three-body force from a numerical solution of the Schr\"{o}dinger equation. In this way the constant DD for hard-sphere bosons is computed, leading to the complete result for the ground state energy per particle of a dilute Bose-Einstein condensate (BEC) of hard spheres to order ρ2\rho^2, where ρ\rho is the number density. Effects of DD are also demonstrated in the three-body energy in a finite box of size LL, which is expanded to the order L7L^{-7}, and in the three-body scattering amplitude in vacuum. Another key prediction is that there is a violation of the effective field theory (EFT) in the condensate fraction in dilute BECs, caused by short-range physics. EFT predictions for the ground state energy and few-body scattering amplitudes, however, are corroborated.Comment: 24 pages, no figur

    Axions Scattering From a Quadrupole Magnetic Field

    Full text link
    We study the 2D scattering of axions from an accelerator like quadrupole magnet using the eikonal approximation in order to learn whether or not such a setup could serve as a new possible method for detecting axions on terrestrial experiments. The eikonal approximation in 2D is introduced and explained. We also apply the eikonal approximation to two known cases in order to compare it with previous results, obtained using Born's approximation, and discuss its correctness

    The continuum description with pseudo-state wave functions

    Get PDF
    Benchmark calculations are performed aiming to test the use of two different pseudo-state bases on the the Multiple Scattering expansion of the total Transition amplitude (MST) scattering framework. Calculated differential cross sections for p-6He inelastic scattering at 717 MeV/u show a good agreement between the observables calculated in the two bases. This result gives extra confidence on the pseudo-state representation of continuum states to describe inelastic/breakup scattering.Comment: 4 pages, 2 figures. Published in Physical Review

    Quantitative rescattering theory for laser-induced high-energy plateau photoelectron spectra

    Get PDF
    A comprehensive quantitative rescattering (QRS) theory for describing the production of high-energy photoelectrons generated by intense laser pulses is presented. According to the QRS, the momentum distributions of these electrons can be expressed as the product of a returning electron wave packet with the elastic differential cross sections (DCS) between free electrons with the target ion. We show that the returning electron wave packets are determined mostly by the lasers only, and can be obtained from the strong field approximation. The validity of the QRS model is carefully examined by checking against accurate results from the solution of the time-dependent Schr\"odinger equation for atomic targets within the single active electron approximation. We further show that experimental photoelectron spectra for a wide range of laser intensity and wavelength can be explained by the QRS theory, and that the DCS between electrons and target ions can be extracted from experimental photoelectron spectra. By generalizing the QRS theory to molecular targets, we discuss how few-cycle infrared lasers offer a promising tool for dynamic chemical imaging with temporal resolution of a few femtoseconds.Comment: 19 pages, 19 figure

    Exchange effects on electron scattering through a quantum dot embedded in a two-dimensional semiconductor structure

    Full text link
    We have developed a theoretical method to study scattering processes of an incident electron through an N-electron quantum dot (QD) embedded in a two-dimensional (2D) semiconductor. The generalized Lippmann-Schwinger equations including the electron-electron exchange interaction in this system are solved for the continuum electron by using the method of continued fractions (MCF) combined with 2D partial-wave expansion technique. The method is applied to a one-electron QD case. Cross-sections are obtained for both the singlet and triplet couplings between the incident electron and the QD electron during the scattering. The total elastic cross-sections as well as the spin-flip scattering cross-sections resulting from the exchange potential are presented. Furthermore, inelastic scattering processes are also studied using a multichannel formalism of the MCF.Comment: 11 pages, 4 figure

    Scattering Wave Functions at Bound State Poles

    Get PDF
    The normalisation relation between the bound and scattering S-state wave functions, extrapolated to the bound state pole, is derived from the Schroedinger equation. It is shown that, unlike previous work, the result does not depend on the details of the potential through the corresponding Jost function but is given uniquely in terms of the binding energy. The generalisations to higher partial waves and one-dimensional scattering are given.Comment: 15 pages Latex. No graph

    Evidence of Pentaquark States from K+ N Scattering Data?

    Full text link
    Motivated by the recent experimental evidence of the exotic B = S = +1 baryonic state Theta(1540), we examine the older existing data on K+ N elastic scattering through the time delay method. We find positive peaks in time delay around 1.545 and 1.6 GeV in the D03 and P01 partial waves of K+ N scattering respectively, in agreement with experiments. We also find an indication of the J=3/2 Theta* spin-orbit partner to the Theta, in the P03 partial wave at 1.6 GeV. We discuss the pros and contras of these findings in support of the interpretation of these peaks as possible exotics.Comment: 10 pages, 4 figure

    Four-photon scattering in birefringent fibers

    Full text link
    Four-photon scattering in nonlinear waveguides is an important physical process that allows photon-pair generation in well defined guided modes, with high rate and reasonably low noise. Most of the experiments to date used the scalar four-photon scattering process in which the pump photons and the scattered photons have the same polarization. In birefringent waveguides, vectorial four-photon scattering is also allowed: these vectorial scattering processes involve photons with different polarizations. In this article, the theory of four-photon scattering in nonlinear, birefringent, and dispersive fibers is developed in the framework of the quantum theory of light. The work focusses on the spectral properties and quantum correlations (including entanglement) of photon-pairs generated in high-birefringence and low-birefringence fibers.Comment: 12 pages, 5 figures, submitted to Phys. Rev.

    HIGH-ENERGY HADRON--DEUTERON SCATTERING.

    Full text link
    corecore