13 research outputs found

    Self-Assembly of Polyion–Surfactant Ion Complex Salts in Mixtures with Water and n-Alcohols

    Get PDF
    Phase behavior and structural features were investigated for "complex salts", consisting of the cationic hexadecyltrimethylammonium (CTA) surfactant with polyacrylate (PA(n), n = 30 or 6000) counterions, mixed with water and different n-alcohols (ethanol, butanol, hexanol, octanol, and decanol). The liquid crystalline structures formed were identified by small-angle X-ray scattering measurements, which provided information about the changes in the geometry of the aggregates as functions of the concentration and chain length of the added n-alcohol. The obtained results were compared with a previous work on similar ternary mixtures of the same cationic surfactant but with the monomeric bromide counterion, CTABr (Fontell, K; Khan, A.; Lindstrom, B.; Maciejewska, D.; Puang-Ngem, S. Colloid Polym. Sc., 1991, 269, 727). In general, the same phases were detected in systems with the complex salts CTAPA(n) as in systems with CTABr, but the swelling of the various liquid crystalline phases by water was much more limited in the complex salt systems. An isotropic alcoholic phase was observed with all alcohols and the size of this region of the phase diagram increased for the shorter alcohols, except for ethanol. For mixtures with octanol and ethanol, in particular, the extensions of the disordered isotropic phases were larger for the complex salt with the shorter polyacrylate ions

    Surface Contamination of Cyclophosphamide Packaging and Surface Contamination with Antineoplastic Drugs in a Hospital Pharmacy in Sweden

    No full text
    Workplaces, e.g. hospital pharmacies and hospital departments, where antineoplastic drugs are handled might be contaminated with these drugs, and pharmacy personnel and health care workers may be exposed. In this study potential sources for exposure of antineoplastic drugs were investigated. Unbroken drug vials and tablet blister packages, both containing cyclophos-phamide (CP) and their outer packaging were wipe sampled. Analysis was performed by liquid chromatography combined with tandem mass spectrometry (LC-MS/MS). The result showed that almost every part of the primary packaging was contaminated with CP and ifosfamide (IF). However, the amounts of CP and IF were low, and most likely not harmful for the personnel handling these packaging in association with drug preparation. The contamination must origin-ate from the pharmaceutical manufacturer. Different surfaces in the preparation unit of a Swedish hospital pharmacy were also investigated at two different occasions by wipe sampling. In the preparation unit CP and IF were found as contaminants on the majority of the invest-igated surfaces. After the first measurement the hospital pharmacy improved its routines. Lower amounts of CP and IF were detected at the second measurement. A low degree of contamination with CP and IF was also detected on the floor outside the preparation unit and this indicated a small distribution of antineoplastic drugs to the surroundings

    Continuous Lipid Bilayers Derived from Cell Membranes for Spatial Molecular Manipulation

    No full text
    Progress with respect to enrichment and separation of native membrane components in complex lipid environments, such as native cell membranes, has so far been very limited. The reason for the slow progress can be related to the lack of efficient means to generate continuous and laterally fluid supported lipid bilayers (SLBs) made from real cell membranes. We show in this work how the edge of a hydrodynamically driven SLB can be used to induce rupture of adsorbed lipid vesicles of compositions that typically prevent spontaneous SLB formation, such as vesicles made of complex lipid compositions, containing high cholesterol content or being derived from real cell membranes. In particular, upon fusion between the moving edge of a preformed SLB and adsorbed vesicles made directly from 3T3 fibroblast cell membranes, the membrane content of the vesicles was shown to be efficiently transferred to the SLB. The molecular transfer was verified using cholera toxin B subunit (CTB) binding to monosialoganglioside receptors (G(M1) and G(M3)), and the preserved lateral mobility was confirmed by spatial manipulation of the G(M1/M3)-CTB complex using a hydrodynamic flow. Two populations of CTB with markedly different drift velocity could be identified, which from dissociation kinetics data were attributed to CTB bound with different numbers of ganglioside anchors

    Natural-abundance solid-state 2H NMR spectroscopy at high magnetic field

    No full text
    High-resolution solid-state (2)H NMR spectroscopy provides a method for measuring (1)H NMR chemical shifts in solids and is advantageous over the direct measurement of high-resolution solid-state (1)H NMR spectra, as it requires only the application of routine magic angle sample spinning (MAS) and routine (1)H decoupling methods, in contrast to the requirement for complex pulse sequences for homonuclear (1)H decoupling and ultrafast MAS in the case of high-resolution solid-state (1)H NMR. However, a significant obstacle to the routine application of high-resolution solid-state (2)H NMR is the very low natural abundance of (2)H, with the consequent problem of inherently low sensitivity. Here, we explore the feasibility of measuring (2)H MAS NMR spectra of various solids with natural isotopic abundances at high magnetic field (850 MHz), focusing on samples of amino acids, peptides, collagen, and various organic solids. The results show that high-resolution solid-state (2)H NMR can be used successfully to measure isotropic (1)H chemical shifts in favorable cases, particularly for mobile functional groups, such as methyl and -N(+)H(3) groups, and in some cases phenyl groups. Furthermore, we demonstrate that routine (2)H MAS NMR measurements can be exploited for assessing the relative dynamics of different functional groups in a molecule and for assessing whole-molecule motions in the solid state. The magnitude and field-dependence of second-order shifts due to the (2)H quadrupole interaction are also investigated, on the basis of analysis of simulated and experimental (1)H and (2)H MAS NMR spectra of fully deuterated and selectively deuterated samples of the alpha polymorph of glycine at two different magnetic field strengths
    corecore