8 research outputs found

    Combining clinical and imaging data for predicting functional outcomes after acute ischemic stroke: an automated machine learning approach

    No full text
    Abstract This study aimed to develop and validate an automated machine learning (ML) system that predicts 3-month functional outcomes in acute ischemic stroke (AIS) patients by combining clinical and neuroimaging features. Functional outcomes were categorized as unfavorable (modified Rankin Scale ≥ 3) or not. A clinical model employing optimal clinical features (Model_A), a convolutional neural network model incorporating imaging data (Model_B), and an integrated model combining both imaging and clinical features (Model_C) were developed and tested to predict unfavorable outcomes. The developed models were compared with each other and with traditional risk-scoring models. The dataset comprised 4147 patients from a multicenter stroke registry, with 1268 (30.6%) experiencing unfavorable outcomes. Age, initial NIHSS, and early neurologic deterioration were identified as the most important clinical features. The ML model prediction achieved an area under the curves of 0.757 (95% CI 0.726–0.789) for Model_A, 0.725 (95% CI 0.693–0.755) for Model_B, and 0.786 (95% CI 0.757–0.814) for Model_C in the test set. The integrated models outperformed traditional risk-scoring models by 0.21 (95% CI 0.16–0.25) for HIAT and 0.15 (95% CI 0.11–0.19) for THRIVE. In conclusion, the integrated ML system enhanced stroke outcome prediction by combining imaging data and clinical features, outperforming traditional risk-scoring models

    Deletion of Gdf15 Reduces ER Stress-induced Beta-cell Apoptosis and Diabetes.

    No full text
    Endoplasmic reticulum (ER) stress contributes to pancreatic beta-cell apoptosis in diabetes, but the factors involved are still not fully elucidated. Growth differentiation factor 15 (GDF15) is a stress response gene and has been reported to be increased and play an important role in various diseases. However, the role of GDF15 in beta cells in the context of ER stress and diabetes is still unclear. In this study, we have discovered that GDF15 promotes ER stress-induced beta-cell apoptosis and that downregulation of GDF15 has beneficial effects on beta-cell survival in diabetes. Specifically, we found that GDF15 is induced by ER stress in beta cells and human islets, and that the transcription factor C/EBPβ is involved in this process. Interestingly, ER stress-induced apoptosis was significantly reduced in INS-1 cells with Gdf15 knockdown and in isolated Gdf15 knockout mouse islets. In vivo, we found that Gdf15 deletion attenuates streptozotocin-induced diabetes by preserving beta cells and insulin levels. Moreover, deletion of Gdf15 significantly delayed diabetes development in spontaneous ER stress-prone Akita mice. Thus, our findings suggest that GDF15 contributes to ER stress-induced beta-cell apoptosis and that inhibition of GDF15 may represent a novel strategy to promote beta-cell survival and treat diabetes

    Changes in CT-Based Morphological Features of the Kidney with Declining Glomerular Filtration Rate in Chronic Kidney Disease

    No full text
    Chronic kidney disease (CKD) progression involves morphological changes in the kidney, such as decreased length and thickness, with associated histopathological alterations. However, the relationship between morphological changes in the kidneys and glomerular filtration rate (GFR) has not been quantitatively and comprehensively evaluated. We evaluated the three-dimensional size and shape of the kidney using computed tomography (CT)-derived features in relation to kidney function. We included 257 patients aged ≥18 years who underwent non-contrast abdominal CT at the Inha University Hospital. The features were quantified using predefined algorithms in the pyRadiomics package after kidney segmentation. All features, except for flatness, significantly correlated with estimated GFR (eGFR). The surface-area-to-volume ratio (SVR) showed the strongest negative correlation (r = −0.75, p < 0.0001). Kidney size features, such as volume and diameter, showed moderate to high positive correlations; other morphological features showed low to moderate correlations. The calculated area under the receiver operating characteristic (ROC) curve (AUC) for different features ranged from 0.51 (for elongation) to 0.86 (for SVR) for different eGFR thresholds. Diabetes patients had weaker correlations between the studied features and eGFR and showed less bumpy surfaces in three-dimensional visualization. We identified alterations in the CKD kidney based on various three-dimensional shape and size features, with their potential diagnostic value

    Simple Microwave-Assisted Synthesis of Amphiphilic Carbon Quantum Dots from A<sub>3</sub>/B<sub>2</sub> Polyamidation Monomer Set

    No full text
    Highly fluorescent and amphiphilic carbon quantum dots (CQDs) were prepared by microwave-assisted pyrolysis of citric acid and 4,7,10-trioxa-1,13-tridecanediamine (TTDDA), which functioned as an A<sub>3</sub> and B<sub>2</sub> polyamidation type monomer set. Gram quantities of fluorescent CQDs were easily obtained within 5 min of microwave heating using a household microwave oven. Because of the dual role of TTDDA, both as a constituting monomer and as a surface passivation agent, TTDDA-based CQDs showed a high fluorescence quantum yield of 29% and amphiphilic solubility in various polar and nonpolar solvents. These properties enable the wide application of TTDDA-based CQDs as nontoxic bioimaging agents, nanofillers for polymer composites, and down-converting layers for enhancing the efficiency of Si solar cells

    Highly Efficient Visible Blue-Emitting Black Phosphorus Quantum Dot: Mussel-Inspired Surface Functionalization for Bioapplications

    Get PDF
    The preparation of blue-emitting black phosphorus quantum dots (BPQDs) is based on the liquid-phase exfoliation of bulk BP. We report the synthesis of soluble BPQDs showing a strong visible blue-light emission. Highly fluorescent (photoluminescence quantum yield of ≈5% with the maximum emission (λ<sub>max</sub>) at ≈437 nm) and dispersible BPQDs in various organic solvents are first prepared by simple ultrasonication of BP crystals in chloroform in the ambient atmosphere. Furthermore, simple mussel-inspired surface functionalization of BPQDs with catechol-grafted poly­(ethylene glycol) in basic buffer afforded water-soluble blue-emitting BPQDs showing long-term fluorescence stability, very low cytotoxicity, and excellent fluorescence live cell imaging capability
    corecore