20 research outputs found

    Long-Range Orbital Transport in Ferromagnets

    Full text link
    While it is often assumed that the orbital transport is short-ranged due to strong crystal field potential and orbital quenching, we show that orbital propagation can be remarkably long-ranged in ferromagnets. In contrast to spin transport, which exhibits an oscillatory decaying behavior by spin dephasing, the injected orbital angular momentum does not oscillate and decays slowly. This unusual feature is attributed to nearly degenerate states in k\mathbf{k}-space, which form hot-spots for the intrinsic orbital response. We demonstrate this in a bilayer consisting of a nonmagnet and a ferromagnet, where the orbital Hall current is injected from a nonmagnet into a ferromagnet. Interaction of the orbital Hall current with the magnetization in the ferromagnet results in an intrinsic response of the orbital angular momentum which propagates far beyond the spin dephasing length. This gives rise to a distinct type of orbital torque on the magnetization, increasing with the thickness of the ferromagnet. Such behavior may serve as critical long-sought evidence of orbital transport to be directly tested in experiments. Our findings open the possibility of using long-range orbital transport in orbitronic device applications

    Observation of the orbital Hall effect in a light metal Ti

    Full text link
    The orbital angular momentum is a core ingredient of orbital magnetism, spin Hall effect, giant Rashba spin splitting, orbital Edelstein effect, and spin-orbit torque. However, its experimental detection is tricky. In particular, direct detection of the orbital Hall effect remains elusive despite its importance for electrical control of magnetic nanodevices. Here we report the direct observation of the orbital Hall effect in a light metal Ti. The Kerr rotation by the accumulated orbital magnetic moment is measured at Ti surfaces, whose result agrees with theoretical calculations semiquantitatively and is supported by the orbital torque measurement in Ti-based magnetic heterostructures. The results confirm the electron orbital angular momentum as an essential dynamic degree of freedom, which may provide a novel mechanism for the electric control of magnetism. The results may also deepen the understanding of spin, valley, phonon, and magnon dynamics coupled with orbital dynamics

    Intrinsic Spin and Orbital Hall Effects from Orbital Texture

    Get PDF
    We show theoretically that both the intrinsic spin Hall effect (SHE) and orbital Hall effect (OHE) can arise in centrosymmetric systems through momentum-space orbital texture, which is ubiquitous even in centrosymmetric systems unlike spin texture. The OHE occurs even without spin-orbit coupling (SOC) and is converted into the SHE through SOC. The resulting spin Hall conductivity is large (comparable to that of Pt) but depends on the SOC strength in a nonmonotonic way. This mechanism is stable against orbital quenching. This work suggests a path for an ongoing search for materials with stronger SHE. It also calls for experimental efforts to probe orbital degrees of freedom in the OHE and SHE. Possible ways for experimental detection are briefly discussed. Ā© 2018 American Physical Societ

    Gigantic intrinsic orbital Hall effects in weakly spin-orbit coupled metals

    No full text
    A recent paper [D. Go et al., Phys. Rev. Lett. 121, 086602 (2018)] proposed that the intrinsic orbital Hall effect (OHE) can emerge from momentum-space orbital texture in centrosymmetric materials. In searching for real materials with strong OHE, we investigate the intrinsic OHE in metals with small spin-orbit coupling (SOC) in face-centered cubic and body-centered cubic structures (Li, Al, V, Cr, Mn, Ni, and Cu). We find that orbital Hall conductivities (OHCs) in these materials are gigantic similar to 10(3)- 10(4) ((h) over bar /e)(Omega . cm)(-1), which are comparable or larger than spin Hall conductivity (SHC) of Pt. Although SHCs in these materials are smaller than OHCs due to small SOC, we found that SHCs are still sizable and the spin Hall angles may be of the order of 0.1. We discuss implications on recent spin-charge interconversion experiments on materials having small SOC.11Nsciescopu

    UCSM-DNN: User and Card Style Modeling with Deep Neural Networks for Personalized Game AI

    No full text
    This paper tries to resolve long waiting time to find a matching person in player versus player mode of online sports games, such as baseball, soccer and basketball. In player versus player mode, game playing AI which is instead of player needs to be not just smart as human but also show variety to improve user experience against AI. Therefore a need to design game playing AI agents with diverse personalized styles rises. To this end, we propose a personalized game AI which encodes user style vectors and card style vectors with a general DNN, named UCSM-DNN. Extensive experiments show that UCSM-DNN shows improved performance in terms of personalized styles, which enrich user experiences. UCSM-DNN has already been integrated into popular mobile baseball game: MaguMagu 2021 as personalized game AI

    Orbitronics: Orbital currents in solids

    No full text
    In solids, electronic Bloch states are formed by atomic orbitals. While it is natural to expect that orbital composition and information about Bloch states can be manipulated and transported, in analogy to the spin degree of freedom extensively studied in past decades, it has been assumed that orbital quenching by the crystal field prevents significant dynamics of orbital degrees of freedom. However, recent studies reveal that an orbital current, given by the flow of electrons with a finite orbital angular momentum, can be electrically generated and transported in wide classes of materials despite the effect of orbital quenching in the ground state. Orbital currents also play a fundamental role in the mechanisms of other transport phenomena such as spin Hall effect and valley Hall effect. Most importantly, it has been proposed that orbital currents can be used to induce magnetization dynamics, which is one of the most pivotal and explored aspects of magnetism. Here, we give an overview of recent progress and the current status of research on orbital currents. We review proposed physical mechanisms for generating orbital currents and discuss candidate materials where orbital currents are manifest. We review recent experiments on orbital current generation and transport and discuss various experimental methods to quantify this elusive object at the heart of orbitronicsĀ ā€”an area which exploits the orbital degree of freedom as an information carrier in solid-state devices

    Nontrivial torque generation by orbital angular momentum injection in ferromagnetic-metal/ Cu / Al 2 O 3 trilayers

    No full text
    Efficient spin/charge interconversion is desired to develop innovative spin-based devices. So far, the interconversion has been performed by using heavy atomic elements, strong spin-orbit interaction of which realizes the interconversion through the spin Hall effect and the Edelstein effect. We demonstrate highly efficient charge-to-spin conversion in a ferromagnetic metal/Cu/Al2O3 trilayers, which do not contain any heavy element. The resulting spin torque efficiency is higher than those of conventional spin Hall and Rashba systems consisting of heavy elements such as Pt and Bi. Our experimental results qualitatively deviate from typical behaviors arising from spin transport. However, they are surprisingly consistent with the behaviors arising from the orbital transport. Our results thus demonstrate a new direction for efficient charge-to-spin conversion through the orbital transport

    Orbital Rashba effect in a surface-oxidized Cu film

    No full text
    Recent experimental observation of an unexpectedly large current-induced spin-orbit torque in surface oxidized Cu on top of a ferromagnet pointed to a possibly prominent role of the orbital Rashba effect (ORE) in this system. Here, we use first principles methods to investigate the ORE in a system of oxygen monolayer deposited on top of a Cu(111) film. We show that surface oxidization of the Cu film leads to a gigantic enhancement of the ORE near the Fermi energy. The resulting chiral orbital texture in the momentum space is exceptionally strong, reaching as much as āˆ¼0.5ā„ in magnitude. We find that resonant hybridization between O p states and Cu d states is responsible for the emergence of the ORE at the interface. We also present a minimal model that captures the emergence of the ORE through the pd hybridization mechanism. We demonstrate that an application of an external electric field to the system generates colossal orbital Hall currents which are an order of magnitude larger than the spin Hall currents found in heavy metals. This implies that the ā€œorbital torqueā€ mechanism may be significant in surface oxidized Cu/ferromagnet structures. Our results encourage an experimental verification of the rich orbital physics in surface oxidized Cu films through optical measurements such as angle-resolved photoemission spectroscopy and momentum microscopy

    Observation of long-range orbital transport and giant orbital torque

    No full text
    Modern spintronics relies on the generation of spin currents through spin-orbit coupling. The spin-current generation has been believed to be triggered by current-induced orbital dynamics, which governs the angular momentum transfer from the lattice to the electrons in solids. The fundamental role of the orbital response in the angular momentum dynamics suggests the importance of the orbital counterpart of spin currents: orbital currents. However, evidence for its existence has been elusive. Here, we demonstrate the generation of giant orbital currents and uncover fundamental features of the orbital response. We experimentally and theoretically show that orbital currents propagate over longer distances than spin currents by more than an order of magnitude in a ferromagnet and nonmagnets. Furthermore, we find that the orbital current enables electric manipulation of magnetization with efficiencies significantly higher than the spin counterpart. These findings open the door to orbitronics that exploits orbital transport and spin-orbital coupled dynamics in solid-state devices.11Ysciescopu

    Long-Range Orbital Torque by Momentum-Space Hotspots

    No full text
    While it is often assumed that the orbital response is suppressed and short ranged due to strong crystal field potential and orbital quenching, we show that the orbital response can be remarkably long ranged in ferromagnets. In a bilayer consisting of a nonmagnet and a ferromagnet, spin injection from the interface results in spin accumulation and torque in the ferromagnet, which rapidly oscillate and decay by spin dephasing. In contrast, even when an external electric field is applied only on the nonmagnet, we find substantially long-ranged induced orbital angular momentum in the ferromagnet, which can go far beyond the spin dephasing length. This unusual feature is attributed to nearly degenerate orbital characters imposed by the crystal symmetry, which form hotspots for the intrinsic orbital response. Because only the states near the hotspots contribute dominantly, the induced orbital angular momentum does not exhibit destructive interference among states with different momentum as in the case of the spin dephasing. This gives rise to a distinct type of orbital torque on the magnetization, increasing with the thickness of the ferromagnet. Such behavior may serve as critical long-sought evidence of orbital transport to be directly tested in experiments. Our findings open the possibility of using long-range orbital response in orbitronic device applications
    corecore