34 research outputs found

    Unsupervised Cross-lingual Image Captioning

    Full text link
    Most recent image captioning works are conducted in English as the majority of image-caption datasets are in English. However, there are a large amount of non-native English speakers worldwide. Generating image captions in different languages is worth exploring. In this paper, we present a novel unsupervised method to generate image captions without using any caption corpus. Our method relies on 1) a cross-lingual auto-encoding, which learns the scene graph mapping function along with the scene graph encoders and sentence decoders on machine translation parallel corpora, and 2) an unsupervised feature mapping, which seeks to map the encoded scene graph features from image modality to sentence modality. By leveraging cross-lingual auto-encoding, cross-modal feature mapping, and adversarial learning, our method can learn an image captioner to generate captions in different languages. We verify the effectiveness of our proposed method on the Chinese image caption generation. The comparisons against several baseline methods demonstrate the effectiveness of our approach.Comment: 8 page

    The Importance of In-Season Strength and Power Training in Football Athletes: A Brief Review and Recommendations

    Get PDF
    Football (soccer) performance requires a diversity of physical attributes and biomotor abilities, such as strength, power, jump mechanics, repeat sprint ability, change of direction and on-ball skills. In-season training focus is often based on metabolic conditioning activities such as small sided games, tactical and technical football drills and traditional running drills in order to further develop and maintain aerobic and anaerobic capacity. However, this often comes at the expense of strength training, which may be compromised for additional time on the pitch. Therefore, the purpose of this review is to provide an evidenced-based approach, to the periodisation of strength and power during a football season. Secondly, the increased popularity of incorporating on-pitch pre-rehabilitation and injury prevention programs that utilise unstable exercises during the entire season to maintain strength and power will also be discussed. Collectively, literature suggests that strength and power maintenance can be achieved with one strength session per week for football athletes. However, it is important for strength and conditioning coaches to continue the development of strength and power characteristics during a football season, which not only assists on-pitch performance but may also attribute to reduction of injury risk. Evidence supporting the effectiveness of on-pitch pre-rehabilitation programming centred on unstable training is lacking at this time

    An Improved Method of Geomagnetic Aided Inertial Navigation Algorithm with Gyro and Accelerometer Error Corrected Online

    No full text
    In consideration of the problem that traditional geomagnetic aided navigation method cannot reduce the scaling error of indication track in inertial navigation system (INS), which will further limit the error correction precision of gyro and accelerometer, an improved geomagnetic matching algorithm based on affine transformation is proposed in this paper. A geomagnetic matching algorithm led to the optimal affine transformation solution by Procrustes analysis is presented and develops latitude and longitude reference information. Then a 13-dimensional-state extended Kalman filter which estimates the attitude misalignment angles, the position error, the velocity error, the Gyro drift, and accelerometer error is introduced to continuously update the output of INS and remove the accumulative error. The results show that geomagnetic aided navigation based on improved algorithm has better location accuracy and correction accuracy of INS than the traditional method

    An Improved Method of Geomagnetic Aided Inertial Navigation Algorithm with Gyro and Accelerometer Error Corrected Online

    No full text
    In consideration of the problem that traditional geomagnetic aided navigation method cannot reduce the scaling error of indication track in inertial navigation system (INS), which will further limit the error correction precision of gyro and accelerometer, an improved geomagnetic matching algorithm based on affine transformation is proposed in this paper. A geomagnetic matching algorithm led to the optimal affine transformation solution by Procrustes analysis is presented and develops latitude and longitude reference information. Then a 13-dimensional-state extended Kalman filter which estimates the attitude misalignment angles, the position error, the velocity error, the Gyro drift, and accelerometer error is introduced to continuously update the output of INS and remove the accumulative error. The results show that geomagnetic aided navigation based on improved algorithm has better location accuracy and correction accuracy of INS than the traditional method

    Suppression of Continuous Wave Interference in Loran-C Signal Based on Sparse Optimization Using Tunable Q-Factor Wavelet Transform and Discrete Cosine Transform

    No full text
    Loran-C is the most essential backup and supplementary system for the global navigation satellite system (GNSS). Continuous wave interference (CWI) is one of the main interferences in the Loran-C system, which will cause errors in the measurement of the time of arrival, thereby affecting positioning performance. The traditional adaptive notch filter method needs to know the frequency of CWI when removing it, and the number is limited. This paper presents a method based on sparseness to suppress the CWI in the Loran-C signal. According to the different morphological characteristics of the Loran-C signal and the CWI, we construct dictionaries suitable for the two components, respectively. We use the tunable Q-factor wavelet transform and the discrete cosine transform to make the two components obtain a good sparse representation in their respective dictionaries. Then, the two components are separated using the morphological component analysis theory. We illustrate this method using both synthetic data and actual data. A huge advantage of the proposed method is that there is no need to know the frequencies of the CWI for it can better cope with frequency changes of the CWI in the actual environments. Compared with the adaptive notch filter method, the results of the proposed method show that our approach is more effective and convenient

    Cathelicidins from the bullfrog Rana catesbeiana provides novel template for peptide antibiotic design.

    No full text
    Cathelicidins, a class of gene-encoded effector molecules of vertebrate innate immunity, provide a first line of defense against microbial invasions. Although cathelicidins from mammals, birds, reptiles and fishes have been extensively studied, little is known about cathelicidins from amphibians. Here we report the identification and characterization of two cathelicidins (cathelicidin-RC1 and cathelicidin-RC2) from the bullfrog Rana catesbeiana. The cDNA sequences (677 and 700 bp, respectively) encoding the two peptides were successfully cloned from the constructed lung cDNA library of R. catesbeiana. And the deduced mature peptides are composed of 28 and 33 residues, respectively. Structural analysis indicated that cathelicidin-RC1 mainly assumes an amphipathic alpha-helical conformation, while cathelicidin-RC2 could not form stable amphipathic structure. Antimicrobial and bacterial killing kinetic analysis indicated that the synthetic cathelicidin-RC1 possesses potent, broad-spectrum and rapid antimicrobial potency, while cathelicidin-RC2 exhibited very weak antimicrobial activity. Besides, the antimicrobial activity of cathelicidin-RC1 is salt-independent and highly stable. Scanning electron microscopy (SEM) analysis indicated that cathelicidin-RC1 kills microorganisms through the disruption of microbial membrane. Moreover, cathelicidin-RC1 exhibited low cytotoxic activity against mammalian normal or tumor cell lines, and low hemolytic activity against human erythrocytes. The potent, broad-spectrum and rapid antimicrobial activity combined with the salt-independence, high stability, low cytotoxic and hemolytic activities make cathelicidin-RC1 an ideal template for the development of novel peptide antibiotics

    Structural and functional characterization of CATH_BRALE, the defense molecule in the ancient salmonoid, Brachymystax lenok

    No full text
    Thick-lipped lenok, Brachymystax lenok is one of the ancient fish species in China and northeast Asia countries. Due to the overfishing, the population of lenok has been declined significantly. Cathelicidins are innate immune effectors that possess both bactericidal activities and immunomodulatory functions. This report identifies and characterizes the salmonoid cathelicidin (CATH_BRALE) from this ancient fish. It consists of open reading frame (ORF) of 886 bp encoding the putative peptide of 199 amino acids. Sequence alignment with other representative salmonid cathelicidins displayed two distinctive features of current lenok cathelicidin: high level of arginine, resulting in high positive charge and glycine residues, which is significantly different from most acknowledged types of cathelicidins; and the six-amino-acid tandem repeated sequence of RPGGGS detected in a variable number of copies among fish cathelicidins, suggesting the existence of a genetically unstable region similar to that found in some mammalian cathelicidins. Expression of CATH_BRALE is predominantly found in gill, with lower levels in the gastrointestinal tract and spleen. The homology modeled structure of CATH_BRALE exhibits structural features of antiparallel beta-sheets flanked by alpha-helices that are representative of small cationic cathelicidin family peptides. CATH_BRALE possesses much stronger antimicrobial activity against gram-negative bacteria than that of the human ortholog, LL-37. The growth of two typical fish bacterial pathogens, gram-negative bacterium of Aeromonas salmonicida and Aeromonas hydrophila was substantially inhibited by synthetic CATH_BRALE, with both MICs as low as 9.38 mu M. (c) 2012 Elsevier Ltd. All rights reserved.Thick-lipped lenok, Brachymystax lenok is one of the ancient fish species in China and northeast Asia countries. Due to the overfishing, the population of lenok has been declined significantly. Cathelicidins are innate immune effectors that possess both bactericidal activities and immunomodulatory functions. This report identifies and characterizes the salmonoid cathelicidin (CATH_BRALE) from this ancient fish. It consists of open reading frame (ORF) of 886 bp encoding the putative peptide of 199 amino acids. Sequence alignment with other representative salmonid cathelicidins displayed two distinctive features of current lenok cathelicidin: high level of arginine, resulting in high positive charge and glycine residues, which is significantly different from most acknowledged types of cathelicidins; and the six-amino-acid tandem repeated sequence of RPGGGS detected in a variable number of copies among fish cathelicidins, suggesting the existence of a genetically unstable region similar to that found in some mammalian cathelicidins. Expression of CATH_BRALE is predominantly found in gill, with lower levels in the gastrointestinal tract and spleen. The homology modeled structure of CATH_BRALE exhibits structural features of antiparallel beta-sheets flanked by alpha-helices that are representative of small cationic cathelicidin family peptides. CATH_BRALE possesses much stronger antimicrobial activity against gram-negative bacteria than that of the human ortholog, LL-37. The growth of two typical fish bacterial pathogens, gram-negative bacterium of Aeromonas salmonicida and Aeromonas hydrophila was substantially inhibited by synthetic CATH_BRALE, with both MICs as low as 9.38 mu M. (c) 2012 Elsevier Ltd. All rights reserved

    Secondary structure modeling of cathelicidin-RCs.

    No full text
    <p>The models of cathelicidin-RCs were produced by Mod6v2 version of MODELLER. Visualization of the structures were accomplished by Pymol and represented in the form of ribbons. The homology modeled structures were displayed in green. Residues of Lysines and Arginines were labeled in red and Cysteines were labeled in purple in shortened forms.</p
    corecore