168 research outputs found

    Persistent H. pylori colonization in early acquisition age of mice related with higher gastric sialylated Lewis x, IL-10, but lower interferon-γ expressions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>H. pylori </it>infection is less prevalent in childhood. This study validated whether the rates of <it>H. pylori </it>colonization depend on different acquisition ages, and correlate with the different gastric Lewis antigens or cytokine expressions after <it>H. pylori </it>acquisition.</p> <p>Methods</p> <p>We applied a young (7-day-old) C57BL/6 mice group (n = 50) and adult (6-week-old) C57BL/6 mice group (n = 50). In each group, 30 mice were challenged with <it>H. pylori </it>and 20 mice served as naïve control. The success of <it>H. pylori </it>colonization was assessed on the 2<sup>nd </sup>week and the 8<sup>th </sup>week, respectively. The intensity of the Lewis x, sialylated Lewis x<sup/>(sialyl-Le<sup>x</sup>), and cytokine expressions, including TNF-α, IFN-γ, IL-6, IL-10, and IL-1β, were immunochemically stained and graded.</p> <p>Results</p> <p>On the 2<sup>nd </sup>week after <it>H. pylori </it>challenge, the colonization rates of <it>H. pylori </it>were similar between the young mice group and the adult mice group (89% vs. 100%, <it>P </it>> 0.05). However, on the 8<sup>th </sup>week, the <it>H. pylori </it>colonization rate was significantly lower in the young mice group than in the adult mice group (53% vs. 95%, <it>P </it>= 0.003). On the 8<sup>th </sup>week, the young mice with a persistence of <it>H. pylori </it>colonization had higher sialyl-Le<sup>x</sup>, higher IL-10, and lower IFN-γ than those of the mice that lost colonization during the 2<sup>nd </sup>to the 8<sup>th </sup>week (<it>P </it>< 0.05).</p> <p>Conclusion</p> <p>The persistence of <it>H. pylori </it>colonization could be an acquisition-age determinant process. After <it>H. pylori </it>exposure at an early acquisition age, the host response with a higher sialyl-Le<sup>x </sup>and IL-10, but a lower IFN-γ correlates to the consequent persistence of <it>H. pylori </it>colonization.</p

    Similarities and Differences Between COVID-19-Related Multisystem Inflammatory Syndrome in Children and Kawasaki Disease

    Get PDF
    In December 2019, the first case of coronavirus disease (COVID-19) was first reported in Wuhan, China. As of March 2021, there were more than 120 million confirmed cases of COVID-19 and 2.7 million deaths. The COVID-19 mortality rate in adults is around 1–5%, and only a small proportion of children requires hospitalization and intensive care. Recently, an increasing number of COVID-19 cases in children have been associated with a new multisystem inflammatory syndrome. Its clinical features and laboratory characteristics are similar to those of Kawasaki disease (KD), KD shock syndrome, and toxic shock syndrome. However, this new disorder has some distinct clinical features and laboratory characteristics. This condition, also known as multisystem inflammatory syndrome in children (MIS-C) associated with COVID-19, has been observed mostly in Europe and the United States. This emerging phenomenon has raised the question of whether this disorder is KD triggered by SARS-CoV-2 or a syndrome characterized by multisystem inflammation that mimics KD. This narrative review is to discuss the differences between MIS-C and KD with the aim of increasing pediatricians' awareness of this new condition and guide them in the process of differential diagnosis

    Focal Stenosis in Right Upper Lobe Bronchus in a Recurrently Wheezing Child Sequentially Studied by Multidetector-row Spiral Computed Tomography and Scintigraphy

    Get PDF
    Lower respiratory tract infections associated with wheezing are not uncommon in infants and young children. Among the wheezing-associated disorders, allergic etiologies are more commonly encountered than anatomic anomalies. We present a 3-year-old girl with a sudden attack of asthmatic symptoms including dyspnea, cyanosis and diffuse wheezing. Based on a history of choking, and atelectasis in the right upper lobe detected by chest films, flexible tracheobronchoscopy was arranged and incidentally detected a stenotic orifice in the right upper lobe bronchus. Multidetector-row spiral computed tomography and pulmonary scintigraphy subsequently also disclosed the focal stenosis. She suffered from recurrent wheezing, pneumonia and lung atelectasis during 1 year of follow-up. We emphasize the diagnosis, clinical course and management of focal stenosis in the right upper lobe bronchus

    Emergence of Ceftriaxone-Resistant Salmonella Isolates and Rapid Spread of Plasmid-Encoded CMY-2–Like Cephalosporinase, Taiwan

    Get PDF
    Of 384 Salmonella isolates collected from 1997 to 2000 in a university hospital in Taiwan, six ceftriaxone-resistant isolates of Salmonella enterica serovar Typhimurium were found in two patients in 2000. The resistance determinants were on conjugative plasmids that encoded a CMY-2–like cephalosporinase. During the study period, the proportion of CMY-2–like enzyme producers among Escherichia coli increased rapidly from 0.2% in early 1999 to >4.0% in late 2000. Klebsiella pneumoniae isolates producing a CMY-2–like β-lactamase did not emerge until 2000. The presence of blaCMY-containing plasmids with an identical restriction pattern from Salmonella, E. coli, and K. pneumoniae isolates was found, which suggests interspecies spread and horizontal transfer of the resistance determinant. Various nosocomial and community-acquired infections were associated with the CMY-2–like enzyme producers. Our study suggests that the spread of plasmid-mediated CMY-2–like β-lactamases is an emerging threat to hospitalized patients and the public in Taiwan

    Helicobacter pylori with stronger intensity of CagA phosphorylation lead to an increased risk of gastric intestinal metaplasia and cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nearly all Taiwanese <it>H. pylori </it>stains are <it>cagA</it>-genopositive and encode CagA protein. In this study, we evaluated whether different intensity of tyrosine phosphorylated-CagA (p-CagA) had an impact on the clinical diseases and histological outcomes in this area.</p> <p>Results</p> <p>We enrolled 469 dyspeptic patients and prospectively obtained the gastric biopsy specimens and the <it>H. pylori </it>isolates. These patients were categorized according to the clinical diseases, such as duodenal ulcer, gastric ulcer, gastric cancer, and gastritis with or without intestinal metaplasia. Their gastric specimens were reviewed by the updated Sydney's system. Furthermore, a total of 146 patients were randomly selected from each clinical category for evaluation of their isolates' p-CagA intensity by <it>in vitro </it>AGS cells co-culture. The p-CagA was sparse in 30 (20.5%), weak in 59 (40.5%), and strong in 57 (39%) isolates. The isolates from the patients of gastric cancer or gastritis with intestinal metaplasia had stronger p-CagA intensity than those of gastritis without intestinal metaplasia (<it>p </it>≤ 0.002). Moreover, the patients infected with isolates with strong or weak p-CagA intensity had a higher risk of gastric intestinal metaplasia (<it>p </it>< 0.05, odds ratio 3.09~15.26) than those infected with sparse p-CagA isolates.</p> <p>Conclusions</p> <p>Infection with <it>H. pylori </it>stains with stronger p-CagA intensity may lead to an increased risk of gastric intestinal metaplasia and cancer.</p

    Cephalosporin and Ciprofloxacin Resistance in Salmonella, Taiwan

    Get PDF
    We report the prevalence and characteristics of Salmonella strains resistant to ciprofloxacin and extended-spectrum cephalosporins in Taiwan from January to May 2004. All isolates resistant to extended-spectrum cephalosporins carried blaCMY-2, and all ciprofloxacin-resistant Salmonella enterica serotype Choleraesuis isolates were genetically related

    Group A Streptococcus Subcutaneous Infection-Induced Central Nervous System Inflammation Is Attenuated by Blocking Peripheral TNF

    Get PDF
    Group A streptococcus (GAS) infection causes a strong inflammatory response associated with cytokine storms, leading to multiorgan failure, which is characterized as streptococcal toxic shock syndrome. However, little is known about GAS subcutaneous infection-mediated brain inflammation. Therefore, we used a bioluminescent GAS strain and reporter mice carrying firefly luciferase under transcriptional control of the nuclear factor-kappa B (NF-κB) promoter to concurrently monitor the host immune response and bacterial burden in a single mouse. Notably, in addition to the subcutaneous inoculation locus at the back of mice, we detected strong luminescence signals from NF-κB activation and increased inflammatory cytokine production in the brain, implying the existence of central nervous system inflammation after GAS subcutaneous infection. The inflamed brain exhibited an increased expression of glial fibrillary acidic protein and nicotinamide adenine dinucleotide phosphate oxidase components and greater microglial activation and blood–brain barrier (BBB) disruption. Furthermore, Fluoro-Jade C positive cells increased in the brain, indicating that neurons underwent degeneration. Peripheral tumor necrosis factor (TNF), which contributes to pathology in brain injury, was elevated in the circulation, and the expression of its receptor was also increased in the inflamed brain. Blockage of peripheral TNF effectively reduced brain inflammation and injury, thereby preventing BBB disruption and improving survival. Our study provides new insights into GAS-induced central nervous system inflammation, such as encephalopathy, which can be attenuated by circulating TNF blockage

    Characterization of CRISPR-Cas Systems in Clinical Klebsiella pneumoniae Isolates Uncovers Its Potential Association With Antibiotic Susceptibility

    Get PDF
    Prokaryotic CRISPR-Cas systems limit the acquisition of genetic elements and provide immunity against invasive bacteriophage. The characteristics of CRISPR-Cas systems in clinical Klebsiella pneumoniae isolates are still unknown. Here, 97 K. pneumoniae genomes retrieved from the Integrated Microbial Genomes &amp; Microbiomes genome database and 176 clinical isolates obtained from patients with bloodstream (BSI, n = 87) or urinary tract infections (UTI, n = 89) in Taiwan, were used for analysis. Forty out of ninety-seven genomes (41.2%) had CRISPR-Cas systems identified by the combination of CRISPRFinder and cas1 gene sequence alignment. The phylogenetic trees revealed that CRISPR-Cas systems in K. pneumoniae were divided into two types (type I-E, 23; subtype I-E∗, 17) based on the sequences of Cas1 and Cas3 proteins and their location in the chromosome. The distribution of type I-E and I-E∗ CRISPR-Cas systems was associated with the multilocus sequence typing and the pulsed-field gel electrophoresis results. Importantly, no CRISPR-Cas system was identified in published genomes of clonal complex 258 isolates (ST11 and ST258), which comprise the largest multi-drug resistant K. pneumoniae clonal group worldwide. PCR with cas-specific primers showed that 30.7% (54/176) of the clinical isolates had a CRISPR-Cas system. Among clinical isolates, more type I-E CRISPR-Cas systems were found in UTI isolates (BSI, 5.7%; UTI, 11.2%), and subtype I-E∗ CRISPR-Cas systems were dominant in BSI isolates (BSI, 28.7%; UTI, 15.7%) (p = 0.042). Isolates which had subtype I-E∗ CRISPR-Cas system were more susceptible to ampicillin-sulbactam (p = 0.009), cefazolin (p = 0.016), cefuroxime (p = 0.039), and gentamicin (p = 0.012), compared to the CRISPR-negative isolates. The strains containing subtype I-E∗ CRISPR-Cas systems had decreased numbers of plasmids, prophage regions, and acquired antibiotic resistance genes in their published genomes. Here, we first revealed subtype I-E∗ CRISPR-Cas system in K. pneumoniae potentially interfering with the acquisition of phages and plasmids harboring antibiotic resistance determinants, and thus maintained these isolates susceptible to antibiotics

    Ciprofloxacin-resistant Salmonella enterica Typhimurium and Choleraesuis from Pigs to Humans, Taiwan

    Get PDF
    We evaluated the disk susceptibility data of 671 nontyphoid Salmonella isolates collected from different parts of Taiwan from March 2001 to August 2001 and 1,261 nontyphoid Salmonella isolates from the National Taiwan University Hospital from 1996 to 2001. Overall, ciprofloxacn resistance was found in 2.7% (18/671) of all nontyphoid Salmonella isolates, in 1.4% (5/347) of Salmonella enterica serotype Typhimurium and in 7.5% (8/107) in S. enterica serotype Choleraesuis nationwide. MICs of six newer fluoroquinolones were determined for the following isolates: 37 isolates of ciprofloxacin-resistant (human) S. enterica Typhimurium (N = 26) and Choleraesuis (N = 11), 10 isolates of ciprofloxacin-susceptible (MIC <1 μg/mL) (human) isolates of these two serotypes, and 15 swine isolates from S. enterica Choleraesuis (N = 13) and Typhmurium (N = 2) with reduced susceptibility to ciprofloxacin (MIC >0.12 μg/mL). Sequence analysis of the gryA, gyrB, parC, parE, and acrR genes, ciprofloxacin accumulation; and genotypes generated by pulsed-field gel electrophoresis with three restriction enzymes (SpeI, XbaI, and BlnI) were performed. All 26 S. enterica Typhimurium isolates from humans and pigs belonged to genotype I. For S. enterica Choleraesuis isolates, 91% (10/11) of human isolates and 54% (7/13) of swine isolates belonged to genotype B. These two genotypes isolates from humans all exhibited a high-level of resistance to ciprofloxacin (MIC 16–64 μg/mL). They had two-base substitutions in the gyrA gene at codons 83 (Ser83Phe) and 87 (Asp87Gly or Asp87Asn) and in the parC gene at codon 80 (Ser80Arg, Ser80Ile, or Ser84Lys). Our investigation documented that not only did these two S. enterica isolates have a high prevalence of ciprofloxacin resistance nationwide but also that some closely related ciprofloxacin-resistant strains are disseminated from pigs to humans
    corecore