12 research outputs found

    Influence of Ag micro-alloying on the thermal stability and ageing characteristics of a Cu–14Fe in-situ composite

    Get PDF
    This paper studied the influence of Ag micro-alloying on the thermal stability and ageing characteristics of a deformation-processed Cu–14Fe in-situ composite prepared by thermo-mechanical processing. Heat treatment caused (i) edge recession, longitudinal splitting, cylinderization, break-up and spheroidisation of the Fe fibres in the Ag micro-alloyed Cu–14Fe in-situ composite, and (ii) recovery, recrystallisation and precipitation in the Cu matrix. Ag micro-alloying caused these processes to occur at lower temperatures. The index Z (a combination figure of merit that assesses the service performance) reached the peak value of 3.3×10 MPa·% IACS after isothermal heat treatment at 500 °C for 1 h, where IACS is the International Annealed Copper Standard, a measure of conductivity. The optimum combinations of tensile strength and conductivity were 1033 MPa and 56.6% IACS; 931 MPa and 58.9% IACS; or 851 MPa and 60.6% IACS. The tensile strength and conductivity of Ag micro-alloyed Cu–14Fe in-situ composite at η=7.8 after isochronal heat treatments were higher than those of the Cu–14Fe in-situ composite at each temperature

    Cu-7Cr-0.1Ag Microcomposites Optimized for High Strength and High Condutivity

    No full text
    This paper (i) investigated how the microstructure, conductivity, and mechanical properties of Cu-7Cr-0.1Ag microcomposites were changed by cold drawing and subsequent heat treatment, and (ii) produced the Cu-7Cr-0.1Ag microcomposite with an optimum combination of strength and conductivity. The figure of merit Z (combining strength and conductivity) of the Cu-7Cr-0.1Ag microcomposite was larger than that of the microcomposite without silver for each heat treatment. The value of Z of the Cu-7Cr-0.1Ag microcomposite was a maximum after heat treatment for 1 h at 600 °C, indicating that this was the optimum intermediate heat treatment. The following combinations of conductivity, strength and ductility (measured as elongation to fracture) were obtained by the Cu-7Cr-0.1Ag microcomposite with η = 8: (i) 77.9% IACS (International Annealed Copper Standard), 920 MPa and 3.1%; (ii) 79.3% IACS, 880 MPa and 3.3%; and (iii) 79.9% IACS, 798 MPa and 3.5%. These values for the Cu-7Cr-0.1Ag microcomposite were larger than those of the Cu-7Cr microcomposite

    Cu-7Cr-0.1Ag Microcomposites Optimized for High Strength and High Condutivity

    No full text
    This paper (i) investigated how the microstructure, conductivity, and mechanical properties of Cu-7Cr-0.1Ag microcomposites were changed by cold drawing and subsequent heat treatment, and (ii) produced the Cu-7Cr-0.1Ag microcomposite with an optimum combination of strength and conductivity. The figure of merit Z (combining strength and conductivity) of the Cu-7Cr-0.1Ag microcomposite was larger than that of the microcomposite without silver for each heat treatment. The value of Z of the Cu-7Cr-0.1Ag microcomposite was a maximum after heat treatment for 1\ua0h at 600\ua0°C, indicating that this was the optimum intermediate heat treatment. The following combinations of conductivity, strength and ductility (measured as elongation to fracture) were obtained by the Cu-7Cr-0.1Ag microcomposite with η\ua0=\ua08: (i) 77.9% IACS (International Annealed Copper Standard), 920\ua0MPa and 3.1%; (ii) 79.3% IACS, 880\ua0MPa and 3.3%; and (iii) 79.9% IACS, 798\ua0MPa and 3.5%. These values for the Cu-7Cr-0.1Ag microcomposite were larger than those of the Cu-7Cr microcomposite
    corecore