4 research outputs found

    Thickness-properties synergy in organic–inorganic consolidated melting-gel coatings for protection of 304 stainless steel in NaCl solutions

    Full text link
    Homogeneous and crack-free methyl-substituted organic–inorganic hybrid glass coatings (thickness up to 10 μm) were deposited on AISI 304 stainless steel. Different hybrid glasses obtained fromconsolidation of the diluted melting gels with various methyltriethoxysilane (MTES)/dimethyldiethoxysilane (DMDES) ratios were evaluated considering chemical structure, coating adhesion and corrosion protection. The 70MTES/30DMDES (molar%) melting-gel coating provided improved corrosion protection for this steel due to the synergy of different properties: a highly cross-linked inorganic structure, a coating plasticity based on the hybrid network, and a good adhesion to the substrate through hydroxyl groups. Electrochemical results showa good barrier film with a passive range of 500 mV, a lowanodic current density (0.03 nA cm−2) and impedance values of 109.5Ωcm2 after two months of immersion in 3.5 wt.% NaCl solution

    Dextran hydrogels by crosslinking with amino acid diamines and their viscoelastic properties

    Full text link
    Amine functionalized polysaccharide hydrogels such as those based on chitosan are widely examined as biomaterials. Here we set out to develop a facile procedure for developing such hydrogels by crosslinking dextran with amino acid diamines. The dextran-amino acid gels were formed by the addition of the amino acid diamines to a dextran and epicholorohydrin solution once it became homogeneous. This was demonstrated with three amino acid diamines, lysine, lysine methyl ester, and cystine dimethyl ester. Hydrogel networks with albumin entrapped were also demonstrated. These hydrogels were characterized by FTIR, SEM, rotational rheometry, swelling studies and cell biocompatibility analysis. These hydrogels showed the unexpected pH-responsive behavior of greater swelling at more basic pH, similar to that of an anionic hydrogel. This is uncharacteristic for amine functionalized gels as they typically exhibit cationic hydrogel behavior. All hydrogels showed similar biocompatibility to that of dextran crosslinked without amino acids

    Dextran hydrogels by crosslinking with amino acid diamines and their viscoelastic properties

    Full text link
    Amine functionalized polysaccharide hydrogels such as those based on chitosan are widely examined as biomaterials. Here we set out to develop a facile procedure for developing such hydrogels by crosslinking dextran with amino acid diamines. The dextran-amino acid gels were formed by the addition of the amino acid diamines to a dextran and epichlorohydrin solution once it became homogeneous. This was demonstrated with three amino acid diamines, lysine, lysine methyl ester, and cystine dimethyl ester. Hydrogel networks with albumin entrapped were also demonstrated. These hydrogels were characterized by FTIR, SEM, rotational rheometry, swelling studies and cell biocompatibility analysis. These hydrogels showed the unexpected pH-responsive behavior of greater swelling at more basic pH, similar to that of an anionic hydrogel. This is uncharacteristic for amine functionalized gels as they typically exhibit cationic hydrogel behavior. All hydrogels showed similar biocompatibility to that of dextran crosslinked without amino acids
    corecore