32 research outputs found

    Comparison between the Needle and Roller Electrospinning of Polyvinylbutyral

    Get PDF
    The effect of the concentration of polyvinylbutyral solution on the process throughput and fibre properties was studied in needle and roller electrospinning. Whereas the polymer throughput is an optional independent parameter in needle electrospinning, it is a dependent parameter that is affected by both the material and process parameters in roller electrospinning. Polymer throughput increases considerably with an increasing concentration of polymer solutions in roller electrospinning. The properties of the nanofibers and the quality of the nanofiber layers were also studied. Fibre diameters increase with an increasing concentration in both techniques. Fibre diameters produced by needle electrospinning are smaller than those produced by roller electrospinning. The distribution of fibre diameters is rather narrow and not significantly dependent on the concentration of solutions in either technique

    Study on the sound absorption behavior of multi-component polyester nonwovens: experimental and numerical methods

    Get PDF
    This study presents an investigation of the acoustical properties of multi-component polyester nonwovens with experimental and numerical methods. Fifteen types of nonwoven samples made with staple, hollow and bi-component polyester fibers were chosen to carry out this study. The AFD300 AcoustiFlow device was employed to measure airflow resistivity. Several models were grouped in theoretical and empirical model categories and used to predict the airflow resistivity. A simple empirical model based on fiber diameter and fabric bulk density was obtained through the power-fitting method. The difference between measured and predicted airflow resistivity was analyzed. The surface impedance and sound absorption coefficient were determined by using a 45 mm Materiacustica impedance tube. Some widely used impedance models were used to predict the acoustical properties. A comparison between measured and predicted values was carried out to determine the most accurate model for multi-component polyester nonwovens. The results show that one of the Tarnow model provides the closest prediction to the measured value, with an error of 12%. The proposed power-fitted empirical model exhibits a very small error of 6.8%. It is shown that the Delany–Bazley and Miki models can accurately predict surface impedance of multi-component polyester nonwovens, but the Komatsu model is less accurate, especially at the low-frequency range. The results indicate that the Miki model is the most accurate method to predict the sound absorption coefficient, with a mean error of 8.39%

    Scaling up the production rate of nanofibers by needleless electrospinning from multiple ring

    No full text
    Mass production of nanofibers is crucial in both laboratory research and industry application of nanofibers. In this study, multiple ring spinnerets have been used to generate needleless electrospinning. Multiple polymer jets were produced from the top of each ring in the spinning process, resulting in thin and uniform nanofibers. Production rate of nanofibers increased gradually with the increase of the number of rings in the spinneret. Spinning performance of multiple ring electrospinning, namely the quality and production rate of the as-spun nanofibers, was dependent on experimental parameters like applied voltage and polymer concentration. Electric field analysis of multiple ring showed that high concentrated electric field was formed on the surface of each ring. Fiber diameter together with production rate of needleless electrospinning was dependent on the strength and distribution of the electric field of the spinneret. Needleless electrospinning from multiple ring can be further applied in both laboratory research and industry where large amount of nanofibers must be employed simultaneously
    corecore