17 research outputs found

    Cytokine Plasma Levels: Reliable Predictors for Radiation Pneumonitis?

    Get PDF
    BACKGROUND: Radiotherapy (RT) is the primary treatment modality for inoperable, locally advanced non-small-cell lung cancer (NSCLC), but even with highly conformal treatment planning, radiation pneumonitis (RP) remains the most serious, dose-limiting complication. Previous clinical reports proposed that cytokine plasma levels measured during RT allow to estimate the individual risk of patients to develop RP. The identification of such cytokine risk profiles would facilitate tailoring radiotherapy to maximize treatment efficacy and to minimize radiation toxicity. However, cytokines are produced not only in normal lung tissue after irradiation, but are also over-expressed in tumour cells of NSCLC specimens. This tumour-derived cytokine production may influence circulating plasma levels in NSCLC patients. The aim of the present study was to investigate the prognostic value of TNF-alpha, IL-1beta, IL-6 and TGF-beta1 plasma levels to predict radiation pneumonitis and to evaluate the impact of tumour-derived cytokine production on circulating plasma levels in patients irradiated for NSCLC. METHODOLOGY/PRINCIPAL FINDINGS: In 52 NSCLC patients (stage I-III) cytokine plasma levels were investigated by ELISA before and weekly during RT, during follow-up (1/3/6/9 months after RT), and at the onset of RP. Tumour biopsies were immunohistochemically stained for IL-6 and TGF-beta1, and immunoreactivity was quantified (grade 1-4). RP was evaluated according to LENT-SOMA scale. Tumour response was assessed according to RECIST criteria by chest-CT during follow-up. In our clinical study 21 out of 52 patients developed RP (grade I/II/III/IV: 11/3/6/1 patients). Unexpectedly, cytokine plasma levels measured before and during RT did not correlate with RP incidence. In most patients IL-6 and TGF-beta1 plasma levels were already elevated before RT and correlated significantly with the IL-6 and TGF-beta1 production in corresponding tumour biopsies. Moreover, IL-6 and TGF-beta1 plasma levels measured during follow-up were significantly associated with the individual tumour responses of these patients. CONCLUSIONS/SIGNIFICANCE: The results of this study did not confirm that cytokine plasma levels, neither their absolute nor any relative values, may identify patients at risk for RP. In contrast, the clear correlations of IL-6 and TGF-beta1 plasma levels with the cytokine production in corresponding tumour biopsies and with the individual tumour responses suggest that the tumour is the major source of circulating cytokines in patients receiving RT for advanced NSCLC

    Prospective study of serial 18F-FDG PET and 18F-fluoride (18F-NaF) PET to predict time to skeletal related events, time-to-progression, and survival in patients with bone-dominant metastatic breast cancer.

    No full text
    Assessing therapy response of breast cancer bone metastases is challenging. In retrospective studies, serial 18F-FDG PET was predictive of time to skeletal related events (tSRE) and time-to-progression (TTP). 18F-NaF PET improves bone metastasis detection compared to bone scans. We prospectively tested 18F-FDG PET and 18F-NaF PET to predict tSRE, TTP, and overall survival (OS) in patients with bone-dominant metastatic breast cancer (BD MBC). Methods: Patients with BD MBC were imaged with 18F-FDG PET and 18F-NaF PET prior to starting new therapy (scan1) and again at a range of times centered around approximately 4 months later (scan2). SUVmax and SULpeak were recorded for a single index lesion and up to 5 most dominant lesions for each scan. tSRE, TTP, and OS were assessed exclusive of the PET images. Univariate Cox regression was performed to test the association between clinical endpoints and 18F-FDG PET and 18F-NaF PET measures. mPERCIST (Modified PET Response Criteria in Solid Tumors) criteria were also applied. Survival curves for mPERCIST compared response categories of Complete Response+Partial Response+Stable Disease versus Progressive Disease (CR+PR+SD vs PD) for tSRE, TTP, and OS. Results: Twenty-eight patients were evaluated. Higher FDG SULpeak at scan2 predicted shorter time to tSRE (P = \u3c0.001) and TTP (P = 0.044). Higher FDG SUVmax at scan2 predicted a shorter time to tSRE (P = \u3c0.001). A multivariable model using FDG SUVmax of the index lesion at scan1 plus the difference in SUVmax of up to 5 lesions between scans was predictive for tSRE and TTP. Among 24 patients evaluable by 18F-FDG PET mPERCIST, tSRE and TTP were longer in responders (CR, PR, or stable) compared to non-responders (PD) (P = 0.007, 0.028 respectively), with a trend toward improved survival (P = 0.1). An increase in the uptake between scans of up to 5 lesions by 18F-NaF PET was associated with longer OS (P = 0.027). Conclusion: Changes in 18F-FDG PET parameters during therapy are predictive of tSRE and TTP, but not OS. mPERCIST evaluation in bone lesions may be useful in assessing response to therapy and is worthy of evaluation in multicenter, prospective trials. Serial 18F-NaF PET was associated with OS, but was not useful for predicting TTP or tSRE in BD MBC

    4DCT-based measurement of changes in pulmonary function following a course of radiation therapy

    No full text
    Purpose: Radiation therapy (RT) for lung cancer is commonly limited to subtherapeutic doses due to unintended toxicity to normal lung tissue. Reducing the frequency of occurrence and magnitude of normal lung function loss may benefit from treatment plans that incorporate the regional lung and radiation dose information. In this article, the authors propose a method that quantitatively measures the regional changes in lung tissue function following a course of radiation therapy by using 4DCT and image registration techniques
    corecore