94 research outputs found

    Research on Tracking and Synchronization of Uncertain Chaotic Systems

    Get PDF
    The tracking and synchronization problem of uncertain chaotic system, which is considered to be applied in secure communication in the future by many researchers, is considered in this paper. A double integral sliding mode controller is adopted to cope with the uncertainties of the chaotic system. Adaptive and robust strategies, such as Nussbaum gain method, are used to solve the unmodeled dynamic problem and unknown control direction problem. Meanwhile, the stability of the whole system is guaranteed by constructing of a big Lyapunov function for the whole system. Finally, a four dimension super-chaotic system is used as an example to do the numerical simulation and it testifies the rightness and effectiveness of the proposed method

    Fault-reconstruction-based cascaded sliding mode observers for descriptor linear systems

    Get PDF
    Published version of an article from the journal: Mathematical Problems in Engineering. Also available from the publisher:http://dx.doi.org/10.1155/2012/623426This paper develops a cascaded sliding mode observer method to reconstruct actuator faults for a class of descriptor linear systems. Based on a new canonical form, a novel design method is presented to discuss the existence conditions of the sliding mode observer. Furthermore, the proposed method is extended to general descriptor linear systems with actuator faults. Finally, the effectiveness of the proposed technique is illustrated by a simulation example

    A proposal for detecting the spin of a single electron in superfluid helium

    Full text link
    The electron bubble in superfluid helium has two degrees of freedom that may offer exceptionally low dissipation: the electron's spin and the bubble's motion. If these degrees of freedom can be read out and controlled with sufficient sensitivity, they would provide a novel platform for realizing a range of quantum technologies and for exploring open questions in the physics of superfluid helium. Here we propose a practical scheme for accomplishing this by trapping an electron bubble inside a superfluid-filled opto-acoustic cavity.Comment: Main text: 5 pages, 5 figures. Supplement: 11 pages, 2 figures, 1 tabl

    KDM Security for Identity-Based Encryption: Constructions and Separations

    Get PDF
    For encryption schemes, key dependent message (KDM) security requires that ciphertexts preserve secrecy even when the messages to be encrypted depend on the secret keys. While KDM security has been extensively studied for public-key encryption (PKE), it receives much less attention in the setting of identity-based encryption (IBE). In this work, we focus on the KDM security for IBE. Our results are threefold. We first propose a generic approach to transfer the KDM security results (both positive and negative) from PKE to IBE. At the heart of our approach is a neat structure-mirroring PKE-to-IBE transformation based on indistinguishability obfuscation and puncturable PRFs, which establishes a connection between PKE and IBE in general. However, the obtained results are restricted to selective-identity sense. We then concentrate on results in adaptive-identity sense. On the positive side, we present two constructions that achieve KDM security in the adaptive-identity sense for the first time. One is built from identity-based hash proof system (IB-HPS) with homomorphic property, which indicates that the IBE schemes of Gentry (Eurocrypt 2006), Coron (DCC 2009), Chow et al. (CCS 2010) are actually KDM-secure in the single-key setting. The other is built from indistinguishability obfuscation and a new notion named puncturable unique signature, which is bounded KDM-secure in the single-key setting. On the negative side, we separate CPA/CCA security from nn-circular security (which is a prototypical case of KDM security) for IBE by giving a counterexample based on differing-inputs obfuscation and a new notion named puncturable IBE. We further propose a general framework for generating nn-circular security counterexamples in identity-based setting, which might be of independent interest

    Design of a TFT-LCD Based Digital Automobile Instrument

    Get PDF
    The traditional mechanical instrument lacks the ability to satisfy the market with characters of favorable compatibility, easy upgrading, and fashion. Thus the design of a TFT-LCD (thin film transistor-liquid crystal display) based automobile instrument is carried out. With a 7-inch TFT-LCD and the 32-bit microcontroller MB91F599, the instrument could process various information generated by other electronic control units (ECUs) of a vehicle and display valuable driving parameters on the 7-inch TFT-LCD. The function of aided parking is also provided by the instrument. Basic principles to be obeyed in circuits designing under on-board environment are first pointed out. Then the paper analyzes the signals processed in the automobile instrument and gives an introduction to the sampling circuits and interfaces related to these signals. Following this is the functional categorizing of the circuit modules, such as video buffer circuit, CAN bus interface circuit, and TFT-LCD drive circuit. Additionally, the external EEPROM stores information of the vehicle for history data query, and the external FLASH enables the display of high quality figures. On the whole, the accomplished automobile instrument meets the requirements of automobile instrument markets with its characters of low cost, favorable compatibility, friendly interfaces, and easy upgrading

    Improvement of Flame Retardancy of Polyurethane Foam Using DOPO-Immobilized Silica Aerogel

    Get PDF
    In this work, silica aerogel was modified by 9,10-dihydro-9-oxa-10-phosphaphenanthrene-1-oxide (DOPO). Then DOPO-immobilized silica aerogel nanoparticles were used as a flame retardant to prepare flame-retardant polyurethane foams. Microscale combustion calorimeter and cone calorimeter tests were employed to evaluate the flame retardancy of polyurethane foams. It was found that both the heat release rate and the total heat release of the composites were reduced with the incorporation of DOPO immobilized silica aerogel. It is speculated that the DOPO-immobilized silica aerogel nanoparticles can inhibit the degradation of polyurethane and catalyze the formation of carbonaceous carbon on the surface

    Model reduction of fuzzy logic systems

    Get PDF
    This paper deals with the problem of l 2 - l ∞ model reduction for continuous-time nonlinear uncertain systems. The approach of the construction of a reduced-order model is presented for high-order nonlinear uncertain systems described by the T-S fuzzy systems, which not only approximates the original high-order system well with an l 2 - l ∞ error performance level γ but also translates it into a linear lower-dimensional system. Then, the model approximation is converted into a convex optimization problem by using a linearization procedure. Finally, a numerical example is presented to show the effectiveness of the proposed method. © 2014 Zhandong Yu et al

    Adaptive Sliding Mode Control for High-Frequency Sampled-Data Systems with Actuator Faults

    No full text
    This paper investigates the sliding mode control for high-frequency sampled-data systems with actuator faults. Besides matched nonlinearity, this paper also considers unmeasurable states and unknown actuator degradation ratio as important factors of the overall system. The estimates of system state vector are obtained by an adaptive sliding mode observer method firstly. Then, a novel integral-type sliding surface, corresponding to the unified closed-loop delta operator system, is provided based on aforementioned estimation values, and the fault closed-loop system is proven to be stable by the proposed sliding mode control law. Finally, the fault-tolerant control theory is verified to be valid via a practical simulation example
    • …
    corecore