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Abstract. The tracking and synchronization problem of uncertain chaotic system,
which is considered to be applied in secure communication in the future by many
researchers, is considered in this paper. A double integral sliding mode controller
is adopted to cope with the uncertainties of the chaotic system. Adaptive and
robust strategies, such as Nussbaum gain method, are used to solve the unmodeled
dynamic problem and unknown control direction problem. Meanwhile, the stability
of the whole system is guaranteed by constructing of a big Lyapunov function for the
whole system. Finally, a four dimension super-chaotic system is used as an example
to do the numerical simulation and it testifies the rightness and effectiveness of the
proposed method.
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1 INTRODUCTION

As a main aspect of nonlinear science, chaos has attracted many researchers of
various fields [1, 2, 3]. It also has comprehensive applications in natural science and
social science.

Chaos synchronization is an important research direction of chaotic science. It
has been researched by many experts since the 1990’s [4, 5, 6, 7, 8]. Much progress
has also been made in its applications such as secret communication and image ma-
nipulation [9]. There are many methods proposed to solve synchronization problem
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of chaotic systems [9, 10, 11, 12]. In many researches the situation that there only ex-
ist static uncertainties between driver system and response system is considered. So
the unmodeled dynamics of synchronization between chaotic system with different
structure were seldom considered, especially for the situation that there exist static
uncertainties, unknown parameters and dynamic uncertainties simultaneously; but
it is very possible for the actual system that driven systems have different structure
with response systems [13], or parameters may be changed unexpectedly because
of the disturbance of environment, or the system model is inevitably inaccurate
because of the dynamic uncertainties. The above situations are very possible to
happen when synchronization of chaotic systems is used in the application of secure
communication. So it is meaningful to study the synchronization of chaotic systems
with both static and dynamic uncertainties.

In this paper, four kinds of uncertainties such as unknown parameters, static
uncertain functions, unmodeled dynamics and unknown control directions [14, 15,
16, 17, 18] are considered simultaneously for the synchronization of chaotic systems.
Adaptive method, robust control and Nussbaum gain control strategy are integrated
to handle the above complex uncertainties. Also a Lyapunov function is constructed
to guarantee the stability of the whole system with a double integral sliding mode
type controller. Finally, numerical simulations are done and the good performance
of the controller testifies the effectiveness and rightness of our proposed method.
Especially, it is worth pointing out that a novel characteristic of the Nussbaum
gain function is firstly defined and used to solve the synchronization problem with
unmodelled dynamics.

2 MODEL DESCRIPTION

The following typical uncertain chaotic system with nonlinear functions is considered
as a response system:

ξ̇ = q(x1, ξ, t) (1)

ẋ = f(x) + ∆(x, ξ, t) + n(u) (2)

where x = [x1, . . . , xn]T , u = [u1, . . . , un]T are vectors, n(u) are continuous nonlinear
input functions. A three dimensional coordinate system is taken as an example, and
it can be extended as follows:

ξ̇ = q(x, ξ, t) (3)

ẋ1 = f1(x1, . . . , x4) + ∆1(x, ξ, t) + n1(u) (4)

ẋ2 = f2(x1, . . . , x4) + ∆2(x, ξ, t) + n2(u) (5)

ẋ3 = f3(x1, . . . , x4) + ∆3(x, ξ, t) + n3(u) (6)

where f(x) are known functions of the system and ∆(x, ξ, t) are uncertain nonlinear
dynamic functions of the system.
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So the objective of tracking problem of chaotic system is to design a control
u = u(x, θ̂), θ̂ = g(x, θ̂), such that states of the system can track to the desired
value. In other word, it satisfies x→ xd, where xd is the desired value.

Without loss of generality, assume xd is a constant value; then ẋdi = 0. Define
a new variable ei = xi − xdi ; then the error system can be described as

ėi = fi(x1, . . . , x4) + ∆i(x1, . . . , x4, ξ) + biui. (7)

To make the following illustration and proof easy, the input nonlinearity ni(u)
is neglected in the tracking problem and it will be considered in the synchronization
problem. So bi is a known constant coefficient here. The driven system can be
described as

ẏ = f(y) + θfθ(y). (8)

Taking a three dimensional coordinate system as a example, it can be ex-
tended as

ẏ1 = fy1(y1, . . . , y4) + θ1fθ1(y) (9)

ẏ2 = fy2(y1, . . . , y4) + θ2fθ2(y) (10)

ẏ3 = fy3(y1, . . . , y4) + θ3fθ3(y) (11)

where θ are unknown parameters, fθ(y) are known functions.
So the objective of the synchronization problem is to design a control u =

u(x, θ̂, d̂), where θ̂′ = g1(x, θ̂, d̂) and d̂′ = g2(x, θ̂, d̂) such that the response system
can track the driven system, that is to say y → x.

Define a new variable as
zi = yi − xi. (12)

Then the error system can be described as

żi = fi(x1, . . . , x4)− fyi(y1, . . . , y4)
− θifθi(y) + ∆i(x, ξ, t)− ni(ui) (13)

where ∆i(•) and qi(•) are unknown continuous Lipschitz functions, the ξ subsys-
tem is the uncertain dynamic part of the above system, and ∆i(•) represents the
uncertain nonlinearities of the system, which satisfies the following assumption.

3 ASSUMPTIONS

Assumption 1. The ξ subsystem can be viewed that it has a input as state x and
there exists an input-to-state practical stability Lyapunov function V0(ξ). That is
to say there exists a smooth positive definite and canonical function V0(ξ) such that

∂V0(ξ)

∂ξ
q(x, ξ, t) ≤ −αz(V0(ξ)) + vz(|si|) + dz,∀(x, ξ, t) ∈ R×Rn0 ×R+ (14)
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where αz(•) and vz(•) are k∞ type functions, s = f(x, y) and y are chaotic signals,
so they are bounded, and dz is a nonnegative constant.

Assumption 2. For 1 ≤ i ≤ n, there exists an unknown constant p∗i ≤ di such that

|∆i(X, ξ, t)| ≤ p∗iψi1(|(x1, . . . , xi)|) + p∗iψi2(|ξ|),∀(X, ξ, t) ∈ Rn ×Rn0 ×R+ (15)

where di is a known constant, ψi1(•) and ψi2(•) are known nonnegative smooth
functions with ψi2(0) = 0.

Remark 1. Without loss of generality, assume that there exists constant εci big
enough such that

[ψi2(|ξ|)]2

(2εci)2
− αz(V0(ξ)) < 0. (16)

Similarly, there exist parameters big enough εc3i such that

vz(|si|)− εc3is2i < 0. (17)

Definition 1. N(χ) is a Nussbaum-type function, if it has the following character-
istics

lim
s→∞

sup
1

s

∫ s

0
N(x)dx = +∞ (18)

lim
s→∞

inf
1

s

∫ s

0
N(x)dx = −∞. (19)

Meanwhile, it is easy to prove that N(χ) + kd also satisfies

lim
s→∞

sup
1

s

∫ s

0
{N(x) + kd}dx = +∞ (20)

lim
s→∞

inf
1

s

∫ s

0
{N(x) + kd}dx = −∞. (21)

4 TRACKING OF UNCERTAIN CHAOTIC SYSTEM

Considering ith subsystem of the error system about tracking problem, it has

ėi = fi(x1, . . . , x4) + ∆i(x1, . . . , x4) + biui. (22)

Design the control ui as follows:

ui = f2i(x)[−fi(x1, . . . , x4)− η(x, z) + fzi(zi)]. (23)

Remember that

|zi∆i(X, ξ, t)| ≤ p∗i |zi|ψi1(|(x1, . . . , xi)|) + p∗i |zi|ψi2(|ξ|) (24)
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where f2i(x) = b−1i and

fzi(zi) = −ki1zi − ki2
zi

|zi|+ εi1
− ki3

3

2
z
1/3
i1 exp(z

2/3
i1 )− ki4sign(zi1). (25)

Then it holds

ziżi = zi[∆i(x)− η(x, z) + fzi(zi)]

≤ zifzi(zi) + p∗i |zi|ψi1(|(x1, . . . , xi)|) + p∗i |zi|ψi2(|ξ|)− ziη(x, z)

= zifzi(zi) + p∗i |zi|ψi1(|(x1, . . . , xi)|) + ε2ciz
2
i +

[ψi2(|ξ|)]2

(2εci)2
− ziη(x, z). (26)

Design the robust control law as

η(x, z) = p̂∗i |zi|ψi1(|(x1, . . . , xi)|) + ε̂c2izi (27)

where p̃∗i is defined as

p̃∗i = p∗i − p̂∗i , ε̃c2i = ε2ci + εc3i − ε̂c2i. (28)

Then it satisfies

ziżi = zifzi(zi) + p̃∗i |zi|ψi1(|(x1, . . . , xi)|) + ε̃c2iz
2
i +

[ψi2(|ξ|)]2

(2εci)2
− εc3iz2i . (29)

Design the adaptive control law as

dp̂∗i
dt

= sign(zi)ψi1(|(x1, . . . , xi)|),
dε̂c2i
dt

= z2i . (30)

Choose a Lyapunov function as

V =
n∑
i=1

1

2
z2i +

1

2
(ε̃2ci)

2 +
1

2
(p̃∗i )

2 + V0(ξ). (31)

Solve its derivative along its trajectory of differential equations; it holds

V̇ =
n∑
i=1

1

2
z2i +

1

2
(ε̃2ci)

2 +
1

2
(p̃∗i )

2 + V0(ξ)

≤
n∑
i=1

zifzi(zi) +
n∑
i=1

[ψi2(|ξ|)]2

(2εci)2
− αz(V0(ξ)) + vz(|z|) + dz − εc3iz2i

≤
n∑
i=1

zifzi(zi) + vz(|z|) + dz − εc3iz2i ≤
n∑
i=1

zifzi(zi) + dz. (32)

Then it is easy to prove that zi is bounded and it can converge to a small
neighborhood of zero with a proper design of fzi(zi).

Since tracking problem is easy compared with the below synchronization problem
situation, the numerical simulation result and details are ignored here.
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4.1 Synchronization of Uncertain Chaotic Systems

Consider the subsystem

żi = fyi(y1, . . . , y4) + θifθi(y)−∆i(x, ξ, t)− fi(x1, . . . , x4)− ni(ui). (33)

Remark 2. Wanglong Li assumed the nonlinear input function ni(ui) is bounded
by ui in paper [13]. It yields positive constants ci1 and ci2, such that the following
conditions are satisfied.

ci1 ≤
ni(ui)

ui
≤ ci2, i = 1, . . . , n. (34)

Then they have
ci1u

2
i ≤ uini(ui) ≤ ci2u

2
i (35)

It is still a strict condition for many real systems. In this paper, we further relax
the restriction for the nonlinear input of the previous work as following Assump-
tion A3.

Assumption 3. For 1 ≤ i ≤ n, there exists an unknown time varying variable bi(t)
such that

ni(ui) = bi(t)ui

and assume bi(t) is bounded. To make it simple, write bi(t) as bi; then bi is an un-
known bounded time-varying parameter. Especially, the sign of bi is unknown.

It is easy to prove that Assumption 3 is more relax than the assumption in [13].

For any ni(ui) satisfies ci1 ≤ ni(ui)
ui
≤ ci2 in paper [13], bi can always be chosen as

bi = ni(ui)
ui

; then ci1 ≤ bi ≤ ci2. bi is restricted to be positive; but in this paper,
bi can be positive or negative; what is worse, the sign of bi is changing during
a comparatively long time interval. With Assumption 3, the error system can be
written as follows:

żi = fyi(y1, . . . , y4) + θifθi(y)−∆i(x, ξ, t)− fi(x1, . . . , x4)− biui. (36)

Define a double integral sliding mode surface as

si = zi + asi

∫ t

0
zidt+ bsi

∫ t

0

∫ t

0
zidtdt. (37)

Solve the derivative as

ṡi = żi + asizi + bsi

∫ t

0
zidt = fyi(y1, . . . , y4) + θifθi(y)

− fi(x1, . . . , x4)−∆i(x, ξ, t)− biui + asizi + bsi

∫ t

0
zidt (38)
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and design the control ui as

ui = fsi(x)udi = fsi(x)[−fyi(y)− θ̂ifθi(y)

+ fi(x) + ηi(x, y, zi, si)− asizi − bsi
∫ t

0
zidt+ fsri(si)] (39)

where

fsi(x) = N(ki)

fsri(s) = −ki1si − ki2
si

|si|+ εi1
− ki3

3

2
s
1/3
i1 exp(s

2/3
i1 )− ki4sign(si1). (40)

Then

siṡi = sifsi(si) + si{θ̃ifθi(y) + ηi(x, y, zi, si)

−∆i(x, ξ, t)}+ si(−biN(ki)u
d
i − udi ) (41)

|si∆i(X, ξ, t)| ≤ p∗i |si|ψi1(|(x1, . . . , xi)|) + p∗i |si|ψi2(|ξ|) (42)

and it also can be written as

siṡi = sifsi(si) + si{θ̃ifθi(y) + ηi(x, y, zi, si)

−∆i(x, ξ, t)}+ si(−biN(ki)u
d
i − udi ) (43)

siṡi ≤ sifsi(si) + p∗i |si|ψi1(|(x1, . . . , xi)|)
+ p∗i |si|ψi2(|ξ|) + siη(x, y, zi, si)

+ siθ̃ifθi(y) + si(−biN(ki)u
d
i − udi ). (44)

It can be arranged as follows:

siṡi ≤ sifzi(zi) + p∗i |si|ψi1(|(x1, . . . , xi)|)

+ ε2cis
2
i +

[ψi2(|ξ|)]2

(2εci)2
+ siη(x, y, zi, si)

+ siθ̃ifθi(y) + si(−biN(ki)u
d
i − udi ). (45)

Design
η(x, y, zi, si) = −p̂∗i sign(si)ψi1(|(x1, . . . , xi)|)− ε̂c2isi (46)

and define

p̃∗i = p∗i − p̂∗i
ε̃c2i = ε2ci + εc3i − ε̂c2i
dθ̂i
dt

= sifθi(y).

Then the following equation holds:

siṡi = sifsi(si) + p̃∗i |si|ψi1(|(x1, . . . , xi)|)
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+ ε̃c2is
2
i +

[ψi2(|ξ|)]2

(2εci)2
− εc3is2i

+ si(−biN(ki)u
d
i − udi ). (47)

Define

dp̂∗i /dt = |si|ψi1(|(x1, . . . , xi)|), dε̂c2i/dt = s2i (48)

and choose a Lyapunov function as

Vi =
1

2

[
s2i + (θ̃i)

2
]

+
1

2
(ε̃2ci)

2 +
1

2
(p̃∗i )

2 + V0(ξ) (49)

and the derivative of the Lyapunov function can be written as

V̇i ≤ sifzi(si) +
[ψi2(|ξ|)]2

(2εci)2
− αz(V0(ξ)) + vz(|si|) + dz − εc3is2i . (50)

According to the assumption, it is easy to prove that

V̇i ≤ sifzi(si) + dz + si(−biN(ki))u
d
i − udi . (51)

With the discussion of Assumption 3, it is necessary to adopt a new kind of control
strategy to solve the unknown control direction of bi. Then use the Nussbaum gain
method and design the Nussbaum gain regulation law as

k̇i = −siudi . (52)

Then,

V̇i ≤ dz + k̇i(1 + biN(ki)). (53)

With integral computation on both sides of the inequality, we have

Vi(t)− Vi(0) ≤ (k(t)− k(0) + bi

∫ k(t)

k(0)
(N(ki) + dz)dk. (54)

Remark 3. Use the apagoge method; assume that k(t) will be unstable in finite
time, so when t → tn, it has k(t) → ∞. With the help of Nussbaum gain function
characteristics, it is easy to prove the above inequality is contradicting. So k(t) is
bounded in finite time.

Now, it is also easy to prove that si is bounded and design fsi(si) such that si
can be converged to a small enough interval near zero. Furthermore, because of the
design of sliding mode coefficients, it is easy to guarantee that si → 0; then it has
zi → 0. So the system is proved to be stable.
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5 EXAMPLE AND SIMULATION

Taking the three dimensional coordinate chaotic system as an example to make
a numerical simulation, the model can be described as

ξ̇ = −5ξ + 3x1 + 0.2x2 + 1.4x3 + 2.7x1x3

ẋ1 = a(x2 − x1) + klb(x2 cosx2 + ξ) + λ1u1

ẋ2 = bx1 − x1x3 − x2 + klb[(1 + sin(x2x3))x2 + 0.7ξx2] + λ2u2

ẋ3 = −cx3 + x1x2 + klb[(2− cos(x1x2x3))x1 + 3.5ξ] + λ3u3

where a, b, c are unknown constants, which are set as (a, b, c) = (10, 28, 8/3), and the
uncertain nonlinear function obviously satisfies all assumptions of this paper. The
initial state of the system can be chosen as

(ξ, x1, x2, x3) = (0, 1, 1, 1).

The model of the driven system can be described as a Genesio system

ẏ1 = y2

ẏ2 = y3

ẏ3 = −a1y1 − b1y2 − c1y3 + y21

where the unknown parameters are chosen as

(a1, b1, c1) = (6, 2.92, 1.2)

and the initial states are chosen as

(y1, y2, y3) = (1, 1, 1).

The comparison between free trajectory of driven system and it of response
system without control can be seen in Figures 1 and 2. It is obvious that the
synchronization between the above two system can not be realized.

Assume that the unknown control direction switches twice at the time of 2.5 s
and 4.5 s, respectively. Using the proposed method, the synchronization of chaotic
system can be achieved (Figure 3, 4 and 5).

The curve of the error of synchronization is shown in Figures 6, 7 and 8.
The curve of Nussbaum gains can be seen in Figures 9, 10 and 11. They are

converged to a new value at the time of 1 s when the input direction switches.
According to the figures, a conclusion can be made that synchronization between
the driven and response systems can be achieved quickly.

The curve of real control gains is given in Figures 12, 13 and 14.
The figures show that the gain of control can be adapted to the change of input

directions such that the chaotic systems with both input unmodeled dynamics and
uncertain input can be synchronized.
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Figure 1. Chaotic behavior of x1,x2,x3

6 CONCLUSIONS

The main contribution of this paper can be summarized as follows. First, to make
the synchronization problem easy to be understood, a simple situation of super-
chaotic system is considered and the tracking problem is investigated. Second,
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Figure 3. Synchronization of x1 and y1
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Figure 4. Synchronization of x2 and y2
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Figure 5. Synchronization of x3 and y3
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Figure 10. Nussbaum gain of k2
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Figure 11. Nussbaum gain of k3
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the synchronization problem is studied and a double integral sliding mode method,
robust control, adaptive control strategy and Nussbaum gain method are perfectly
integrated to solve complex uncertainties. Third, a novel characteristic of Nussbaum
function is proposed and used to cope with dynamic uncertainties in this paper. Also,
a numerical simulation is made and good performance is achieved; this testifies the
rightness and effectiveness of the proposed method.
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