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This paper develops a cascaded sliding mode observer method to reconstruct actuator faults
for a class of descriptor linear systems. Based on a new canonical form, a novel design method
is presented to discuss the existence conditions of the sliding mode observer. Furthermore, the
proposed method is extended to general descriptor linear systems with actuator faults. Finally, the
effectiveness of the proposed technique is illustrated by a simulation example.

1. Introduction

With the development and applications of modern control techniques, the safety and
reliability of control systems are becoming increasingly important. Therefore, the fault
diagnosis has become one of the most important techniques to ensure the safety and
reliability of control systems [1, 2]. During the last two decades, many significant results have
been obtained for the analysis and observer design of fault diagnosis of the regular systems,
such as unknown input observers [3, 4], eigenstructure assignment method [5], H∞ filtering
[6–9], parity space approach [10], and parameter identification approach [11].

Just like regular systems, the fault diagnosis for descriptor systems has recently
attracted increasing attention due to their importance in real-world systems. In [12], a
parametric approach is proposed to design unknown input observers to realize fault
detection of descriptor linear multivariable systems with unknown disturbances. By directly
identifying parity space, a model-free approach for fault detection is developed, which can
be applied if the model of descriptor systems is unknown [13]. In [14], the factorization
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approach for robust residual generation is extended to descriptor systems, and then a post-
filter is added to ensure the robustness of fault diagnosis. In [15], H∞ filter is utilized
for providing disturbance rejection and robustness properties of the fault detection and
isolation schemes of linear time-invariant descriptor systems. In [16], several sufficient
conditions of existence of unknown input observers are obtained for Takagi-Sugeno
descriptor systems, which are affected by unknown inputs. Unfortunately, although these
methods can successfully generate residuals, they fail to reconstruct fault signals.

Recently, fault reconstruction is a promising alternative for fault detection. Instead of
generating residuals, a number of methods, such as sliding mode observers (SMOs) [17–
23], descriptor observer method [24–26], and PI observer [27–29], can be used to reconstruct
fault signals. The sliding mode control is employed in the situations including state
estimation and fault detection, since it is insensitive to matched uncertainties, nonlinearity,
or disturbances [30]. Edwards et al. [17] firstly used the concept of the equivalent output
error injection signals to reconstruct faults. Tan and Edwards [19] extended this work for
robust reconstruction of sensor and actuator faults by minimizing the effect of uncertainty on
the reconstruction in an L2 sense. Some well-studied works, aiming at reducing the system
constraints associated with the results in [17, 19], have recently appeared in the literature
[18, 20–23]. In order to relax the matching conditions, the cascaded sliding mode observer
method was proposed to deal with a class of systems with relative degree higher than one
[20, 21]. In [22], the auxiliary outputs are defined such that the conventional sliding mode
observer in [17] can be used for systems without the observer matching condition. In order
to obtain those auxiliary outputs, high-order sliding-mode observers are constructed to act as
exact differentiators using a super-twisting algorithm. Inspired by Floquet et al. [22], high-
gain approximate differentiators and high-order sliding-mode robust differentiators were
proposed to generate auxiliary outputs for the design of sliding mode observers [18, 23].

Although there are many achievements in regular systems, few results have been
reported to the descriptor case despite its importance in real-world systems. In [31, 32], the
sliding mode observer method was employed to detect and isolate faults and to reconstruct
the faults for descriptor systems. However, the uncertainty was not considered in these
results. In [33], the sliding mode observer was proposed to minimize the effect of uncertainly
on the reconstruction of faults for descriptor systems. Unfortunately, the fault detection filter
based sliding mode observer has to satisfy the strict condition in [31–33], which severely
limits the applicability of these approaches for a wide range of practical systems.

Motivated by the above discussion, in this paper, we develop a cascaded sliding
mode observer method to reconstruct actuator faults for a class of descriptor linear systems.
The main contribution of this paper can be summarized as follows: (1) we present a novel
cascaded sliding mode observer method to reconstruct actuator faults for a class of descriptor
linear systems; (2) in the design process, we remove this restrictive assumption and extend
the cascaded sliding mode observer approach of Tan et al. [20, 21] to descriptor systems; (3)
a novel cascaded sliding mode observer is designed for reconstructing actuator faults for a
class of descriptor linear systems.

The paper is organized as follows. In Section 2, the problem is formulated, and
appropriate coordinate transformations are introduced to exploit the system structure. In
Section 3 the design algorithm of cascaded sliding mode observer for linear descriptor
systems is given. In Section 4, a design method of cascaded sliding mode observer and fault
reconstruction for general descriptor systems are presented. In Section 5, an example is given
to support the effectiveness of the proposed approach. Finally, the conclusions are drawn.
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2. Problem Statement and System Analysis

Consider a descriptor linear system described by

Eẋ = Ax + Bu +Df

y = Cx,
(2.1)

where x ∈ Rn is the state variable, u ∈ Rk is the input vector, y ∈ Rp is the output variable,
and f ∈ Rq is unknown but bounded so that

∥
∥f

∥
∥ ≤ β, (2.2)

where the positive scalar β is known. The signal f models the actuator fault within the system.
A ∈ Rm×n, B ∈ Rm×k, C ∈ Rp×n, and D ∈ Rm×q are known constant real matrices. Without loss
of generality, it is assumed that rank(D) = q, rank(C) = p, and E is full row rank.

In [32], a sliding mode observer is given in the following form:

ż = Fz + T1Bu +K1y +K2y +Gnυ

x̂ = z + T2y

ŷ = Cx̂,

(2.3)

where z ∈ Rñ is the state vector of the SMO, x̂ is the estimation of the state vector x, and υ is
the discontinuous output error injection vector defined by

υ =

⎧

⎪⎨

⎪⎩

−η P0ey
∥
∥P0ey

∥
∥

ey /= 0

0 other,
(2.4)

where ey = ŷ − y, η > 0, F, T1, T2, K1, K2, Gn, and P0 are parameters to be designed.
For the descriptor system (2.1), the sufficient conditions for the existence of the sliding

mode observer (2.3) are as follows:

rank
[
E D
C 0

]

= n + q (2.5)

rank
[
sE −A D

C 0

]

= n + q, Re(s) ≥ 0. (2.6)
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It is well known that condition (2.5) is quite restrictive and may not apply to a wide
range of systems. In the following, we give two more relaxed conditions:

rank
[
E
C

]

= n, (2.7)

rank
[
E D
C 0

]

= n + l, (2.8)

where l ≤ q.
Before presenting the main results, some lemmas are given as follows.

Lemma 2.1. If the conditions (2.7) and (2.8) hold, there exists a nonsingular matrix U such that

rank
[
E D1

C 0

]

= n + l, (2.9)

rank
[
E D2

C 0

]

= n, (2.10)

where [D1 D2] = DU, and D1 ∈ Rm×l, D2 ∈ Rm×(q−l).

Proof. if l is equal to q, the conclusion is obviously true. So the following is to prove the case
that l is less than q.

Obviously, there exists a nonsingular matrixU1 so thatDU1 = [D1 D2] and (2.9) hold.
Then,

rank
[
E D
C 0

]

= rank

[

E D1 D2

C 0 0

]

= n + l. (2.11)

So there exists a matrix Y =
[
Y1
Y2

]

so that

[

D2

0

]

=
[
E D1

C 0

][
Y1

Y2

]

. (2.12)

Thus, we have D2 = EY1 +D1Y2 and CY1 = 0.
Setting

U2 =
[
I −Y2

0 I

]

(2.13)

and U = U1U2, we have

rank
[
E D2

C 0

]

= rank
[
E EY1

C CY1

]

= rank
[
E
C

]

= n. (2.14)
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Lemma 2.2. If the following conditions

rank
[
E D1

C 0

]

= n + l,

rank
[
sE −A D1

C 0

]

= n + l, Re(s) ≥ 0

(2.15)

hold, there exist two nonsingular matrices P and Q such that

PEQ =
[

0 E12

Iñ−p̃ E22

]

, PAQ =
[
A11 A12

A21 A22

]

PD1 =
[
DI

0

]

, CQ =
[

0 Ip
]

,

(2.16)

where E12 ∈ R(m−n+p)×p, E22 ∈ R(n−p)×p, A11 ∈ R(m−n+p)×(n−p), A12 ∈ R(m−n+p)×p, A21 ∈ R(n−p)×(n−p),
A22 ∈ R(n−p)×p, DI = [0 Il]

T ∈ R(m−n+p)×l, and the subblock A11 has the structure

A11 =
[
A111

A112

]

, (2.17)

in which A111 ∈ R(m−n+p−l)×(n−p), A112 ∈ Rl×(n−p), and the pair (A21, A111) is detectable.
It can be established easily by Lemma 2 in [33], and hence the proof is omitted.

Lemma 2.3. If the conditions (2.6), (2.7), and (2.8) hold, there exist nonsingular matrices P ,Q, and
U such that

PEQ =
[

0 E12

In−p E22

]

, PAQ =
[
A11 A12

A21 A22

]

(2.18)

PB =
[
B1

B2

]

, CQ =
[

0 Ip
]

(2.19)

PDU =
[
D11 0
0 D22

]

, (2.20)

where E12 ∈ R(m−n+p)×p, E22 ∈ R(n−p)×p, A11 ∈ R(m−n+p)×(n−p), A12 ∈ R(m−n+p)×p, A21 ∈ R(n−p)×(n−p),
A22 ∈ R(n−p)×p, B1 ∈ R(m−n+p)×k, B2 ∈ R(n−p)×k, D11 = [0 Il]

T ∈ R(m−n+p)×l, D22 ∈ R(n−p)×(q−l), and
the subblock A11 has the structure

A11 =
[
A111

A112

]

, (2.21)

where A111 ∈ R(m−n+p−l)×(n−p), A112 ∈ Rl×(n−p), and (A21, A111) is detectable.
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Proof . By Lemma 2.1, there exists a nonsingular matrix U such that (2.9) and (2.10) hold,
where DU = [D1 D2].

Obviously,

rank
[
sE −A D1

C 0

]

= n + l, Re(s) ≥ 0. (2.22)

By Lemma 2.2, there exist two nonsingular matrices P and Q such that (2.18) and
(2.19) hold and

PD1 =
[
D11

0

]

. (2.23)

Setting PD2 =
[
D21
D22

]

, we have

rank
[
E D2

C 0

]

= rank
[
P 0
0 I

][
E D2

C 0

][
Q 0
0 I

]

= rank

⎡

⎣

0 E12 D21

In−p E22 D22

0 Ip 0

⎤

⎦

= rank(D21) + n.

(2.24)

Combining (2.10) and (2.24), we have rank(D21) = 0. Obviously, D21 = 0.

By Lemma 2.3, it can be assumed without loss of generality that system (2.1) has the
following form:

[
0 E12

In−p E22

][
ẋ1

ẋ2

]

=
[
A11 A12

A21 A22

][
x1

x2

]

+
[
B1

B2

]

u

+
[
D11

0

]

f1 +
[

0
D22

]

f2

y = x2,

(2.25)

where x = [xT
1 xT

2 ]
T
, x1 ∈ Rn−p, x2 ∈ Rp and

f −→ Uf =
[

fT
1 fT

2

]T
. (2.26)

The descriptor system (2.25)may be considered as the systemwith the fault f1 and the
disturbance f2. Using the fault reconstructionmethod in [33], the fault f1 can be reconstructed
and the L2 gain from the f2 to reconstruction error of fault f1 can be minimized. But the fault
f2 and the state x1 cannot be estimated. Inspired by Tan et al. [20, 21], the cascaded sliding
mode observer is applied to estimate both the state x and fault f in the following.
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3. Design of Cascaded Sliding Mode Observer

The primary sliding mode observer for system (2.25) is

ż = (T1A −K1C)z + T1Bu +K1y + FT2y +Gnυ

x̂ = z + T2y

ŷ = x̂2,

(3.1)

where z ∈ Rn is the state vector of the SMO, x̂ = [x̂T
1 x̂T

2 ]
T with x̂1 ∈ Rn−p and x̂2 ∈ Rp is the

estimation of the state vector x, Gn = [0 I]T , T1 and T2 are defined by

T1 =
[
Z1 In−p
Z2 0

]

(3.2)

T2 =
[
0
Ip

]

− T1

[
E12

E22

]

(3.3)

Z1 =
[

Z11 0
]

, (3.4)

Z1 ∈ R(n−p)×(m−n+p), Z11 ∈ R(n−p)×(m−n+p−q), Z2 ∈ Rp×(m−n+p) is full rank, υ is the discontinuous
output error injection vector defined by:

υ =

⎧

⎨

⎩

−η P2e2
‖P2e2‖ e2 /= 0

0 other,
(3.5)

e2 = x̂2 − x2, η > 0, Z11, Z2, K1, F, and P2 are parameters to be designed.
In [33], it is shown that for an appropriate choice of observer parameters an ideal

sliding motion takes place on S = {(e1, e2) | e2 = 0} in finite time.
Define e = x̂ − x as the state estimation error, the following estimation error dynamic

is obtained:

ė1 = (A21 + Z1A11)e1 + (Z1A12 +A22 −K11)e2 +D22f2

ė2 = Z2A11e1 + (Z2A12 −K12)e2 − Z2D11f1 + υ,
(3.6)

where e = [eT1 eT2 ]
T , e1 ∈ Rn−p, K1 = [KT

11 KT
12]

T , K11 ∈ R(n−p)×p, and K12 ∈ Rp×p.
Assuming the primary sliding mode observer has been designed, and that a sliding

motion has been achieved, then e2 = ė2 = 0, and the error equation becomes

ė1 = (A21 + Z1A11)e1 +D22f2

Z+
2υeq = −A11e1 +D11f1,

(3.7)
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where Z+
2 is the generalized inverse matrix of Z2, υeq is the equivalent output error injection

term that can be approximated to any degree of accuracy by replacing (3.8)with

υeq = −η P2e2
‖P2e2‖ + δ

, (3.8)

where δ is a small positive constant.
The remaining system freedom can be used to estimate the state x1 and reconstruct the

fault f2. Equation (3.7) can be rewritten as

ė1 = (A21 + Z1A11)e1 +D22f2 (3.9)

D⊥
11Z

+
2υeq = −A111e1, (3.10)

where D⊥
11 = [ Im+p−n−l 0 ].

For any A111, there exists a nonsingular matrix W so that WA111 = [ ÂT
111 0 ]T , where

Â111 ∈ Rp̂×(n−p) is full row rank. We have

[

Ip̂ 0
]

WD⊥
11Z

+
2υeq = −Â111e1. (3.11)

The system (3.9) and (3.11)may be considered as the linear systemwith the q− l faults,
the n − p states f1 and the p̂ outputs. Using the sliding mode observer design method for the
linear system in [17], we can design a secondary sliding mode observer to estimate e1 and f2
if the following conditions hold:

rank
(

Â111D22

)

= rank(D22)

rank

[

sI − (A21 + Z1A11) D22

Â111 0

]

= n − p + q − l, Re(s) ≥ 0.
(3.12)

Obviously, (3.12) are equivalent to

rank(A111D22) = rank(D22) (3.13)

rank
[
sI − (A21 + Z1A11) D22

A111 0

]

= n − p + q − l, Re(s) ≥ 0. (3.14)

Combined with (3.4), (3.14) is equivalent to

rank
[
sI −A21 D22

A111 0

]

= n − p + q − l, Re(s) ≥ 0. (3.15)

From the above analysis, if the conditions (3.13) and (3.15) satisfy, there exists a
cascaded sliding mode observer for the descriptor system (2.1).

Next, the fault reconstruction method based cascaded sliding mode observer is given.
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Assuming that the secondary sliding mode observer has been designed and the ê1 and
f̂2 are the estimations of e1 and f2, respectively. Then, the reconstruction signal of the fault f1
is described by

f̂1 = A112ê1 +
[

0 Il
]

Z+
2υeq, (3.16)

and the estimation of the state x1 is described by

x̂1 − ê1 −→ x1. (3.17)

The reconstruction of fault is described by

f̂ = U−1
[

f̂ T
1 f̂ T

2

]T
(3.18)

Equations (3.13) and (3.15) are the sufficient conditions for the existence of the
cascaded sliding mode observer, but these cannot be checked using the parameters of the
original system (2.1). Now, for system (2.1), sufficient conditions for the existence of the
cascaded sliding mode observer can be given by Theorem 3.1.

Theorem 3.1. There exists a cascaded sliding mode observer for system (2.1) if the following condi-
tions hold:

rank
[
E
C

]

= n (3.19)

rank

⎡

⎢
⎢
⎣

E A D 0
0 E 0 D
C 0 0 0
0 C 0 0

⎤

⎥
⎥
⎦

= n + q + rank
[
E D
C 0

]

, (3.20)

rank
[
sE −A D

C 0

]

= n + q, Re(s) ≥ 0. (3.21)

Proof. If l is equal to q, the conclusion is obviously true. So, the following is to prove the case
that l is less than q.
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Substituting (2.8) and (2.25) into (3.20), we have

rank

⎡

⎢
⎢
⎣

E A D 0
0 E 0 D
C 0 0 0
0 C 0 0

⎤

⎥
⎥
⎦

= rank

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 E12 A11 A12 D11 0 0 0
In−p E22 A21 A22 0 D22 0 0
0 0 0 E12 0 0 D11 0
0 0 In−p E12 0 0 0 D22

0 Ip 0 0 0 0 0 0
0 0 0 Ip 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= n + p + l + rank
[
A11 D11 0
In−p 0 D22

]

= n + p + l + rank

⎡

⎣

A111 0 0
A112 Il 0
In−p 0 D22

⎤

⎦

= n + p + 2l + rank
[
In−p D22

A111 0

]

= 2n + q + l.

(3.22)

So we have

rank
[
In−p D22

A111 0

]

= n − p + q − l. (3.23)

By Lemma 1 in [32], (3.13) holds.
Substituting (2.18), (2.19), and (2.20) into (3.21), we can obtain (3.15).

4. Cascaded Sliding Mode Observer Design and Fault Reconstruction
for General Descriptor Systems

In Section 2, it is assumed that E is full row rank. In the following, it is discussed that E is
rank deficient. Let r := rank(E) ≤ min{m,n}.

Now, since rank(E) = r, there exists a regular matrix P ∗ such that (2.1) is restricted
system equivalent to

E∗ẋ = A∗x + B∗u +D∗f

y1 = −B1u = A1x +D1f

y = Cx,

(4.1)
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where P ∗E =
[
E∗
0

]

, P ∗A =
[
A∗

A1

]

, P ∗B =
[
B∗

B1

]

, P ∗D =
[
D∗

D1

]

, E∗ ∈ Rr×n, A∗ ∈ Rr×n, B∗ ∈ Rr×k,

D∗ ∈ Rr×p, A1 ∈ R(m−r)×n, B1 ∈ R(m−r)×k, and D1 ∈ R(m−r)×q.
First passing the output y1 through a nonsingular matrix P∗ so that

P∗y1 =

{

y11(t) = A11x

y12(t) = A12x +D1f,
(4.2)

where D1 ∈ Rp×q is row full rank.
Consider a new state xf ∈ Rp which is a filtered version of y12 satisfying

ẋf = −Afxf +Afy12, (4.3)

where −Af ∈ Rp×p is a stable (filter) matrix.
Equations (4.1), (4.2), and (4.3) can be combined to form an augmented state-space

system with order ñ as follows:

Ea
˙̃x = Aax̃ + Bau +Daf

ya = Cax̃,
(4.4)

where Ea =
[
E∗ 0
0 I

]

, Aa =
[

A∗ 0
AfA12 −Af

]

, Ba =
[
B∗
0

]

, Da =
[

D∗
AfD1

]

, Ca =
[A11 0

C 0
0 I

]

, x̃ = [xT xT
f
]T , ya =

[yT
11 yT xT

f ]
T , ñ = n + p, and p̃ = p +m − r.

Obviously, the matrix Ea is full row rank so that the cascaded sliding mode observer
can be designed using the method in Section 3.

In the following, the existence conditions of the cascaded sliding mode observer for
general descriptor systems are given by Theorem 4.1.

Theorem 4.1. There exists a cascaded sliding mode observer for system (2.1) with rank-deficient E if
the following conditions hold:

rank
[
E A D
0 C 0

]

= m + p (4.5)

rank

⎡

⎣

E A D
0 E 0
0 C 0

⎤

⎦ = n + rank
[

E D
]

(4.6)

rank

⎡

⎢
⎢
⎢
⎢
⎢
⎣

E A 0 D 0 0
0 E A 0 D 0
0 0 E 0 0 D
0 C 0 0 0 0
0 0 C 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= n + q + rank

⎡

⎣

E A D 0
0 E 0 D
0 C 0 0

⎤

⎦, (4.7)

rank
[
sE −A D

C 0

]

= n + q, Re(s) ≥ 0. (4.8)
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Proof. Define a nonsingular matrix as follows:

P1 = diag
([

I 0
0 P∗

]

P ∗,
[
I 0
0 P∗

]

P ∗, I
)

. (4.9)

We have

rankP ∗[E D
]

= rank

[

E∗ D∗

0 D1

]

= r + p (4.10)

rank

⎡

⎣

E A D
0 E 0
0 C 0

⎤

⎦ = rankP1

⎡

⎣

E A D
0 E 0
0 C 0

⎤

⎦

= rank

⎡

⎢
⎢
⎣

A11 0
0 Ip
E∗ 0
C 0

⎤

⎥
⎥
⎦
+ r,

(4.11)

rank
[
Ea

Ca

]

= rank

⎡

⎢
⎢
⎢
⎢
⎢
⎣

E∗ 0
0 Ip

A11 0
C 0
0 Ip

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= rank

⎡

⎢
⎢
⎣

A11 0
0 Ip
E∗ 0
C 0

⎤

⎥
⎥
⎦
. (4.12)

Combining (4.6), (4.10), (4.11), and (4.12), we have

rank
[
Ea

Ca

]

= ñ. (4.13)

Define a nonsingular matrix as follows:

P2 = diag
([

I 0
0 P∗

]

P ∗,
[
I 0
0 P∗

]

P ∗,
[
I 0
0 P∗

]

P ∗, I, I
)

. (4.14)
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We have

rankP2

⎡

⎢
⎢
⎢
⎢
⎢
⎣

E A 0 D 0 0
0 E A 0 D 0
0 0 E 0 0 D
0 C 0 0 0 0
0 0 C 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= r + p + rank

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

E∗ A∗ D∗ 0
0 A12 D1 0
0 E∗ 0 D∗

0 0 0 D1

C 0 0 0
A11 0 0 0
0 C 0 0
0 A11 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.15)

rank

⎡

⎢
⎢
⎣

Ea Aa Da 0
0 Ea 0 Da

Ca 0 0 0
0 Ca 0 0

⎤

⎥
⎥
⎦

= 2p + rank

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

E∗ A∗ D∗ 0
0 A12 D1 0
0 E∗ 0 D∗

0 0 0 D1

A11 0 0 0
C 0 0 0
0 A11 0 0
0 C 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4.16)

rankP1

⎡

⎣

E A D 0
0 E 0 D
0 C 0 0

⎤

⎦ = rank

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

E A D 0
0 A11 0 0
0 A12 D1 0
0 E 0 D
0 0 0 D1

0 C∗ 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= rank

⎡

⎢
⎢
⎢
⎢
⎢
⎣

A12 D1 0
E 0 D
0 0 D1

A11 0 0
C∗ 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+ r

= rank
[
Ea Da

Ca 0

]

+ r.

(4.17)

Combining (4.7), (4.15), (4.16), and (4.17), we have

rank

⎡

⎢
⎢
⎣

Ea Aa Da 0
0 Ea 0 Da

Ca 0 0 0
0 Ca 0 0

⎤

⎥
⎥
⎦

= ñ + q + rank
[
Ea Da

Ca 0

]

. (4.18)

Define a nonsingular matrix as follows:

P3 = diag
([

I 0
0 P∗

]

P ∗, I
)

. (4.19)
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We have

rank
[
sE∗ −A∗ D∗

C∗ 0

]

= rankP3

[
sE∗ −A∗ D∗

C 0

]

= rank

⎡

⎢
⎢
⎣

sE −A D
−A11 0
−A12 D1

C∗ 0

⎤

⎥
⎥
⎦

= n + q;

(4.20)

thus,

rank

⎡

⎢
⎢
⎢
⎢
⎢
⎣

sE∗ −A∗ 0 D∗

−A11 0 0
−A12 0 D1

C∗ 0 0
0 Ip 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= n + q + p. (4.21)

Define

P4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

I 0 0 0 0
0 0 Af 0 s +Af

0 I 0 0 0
0 0 0 I 0
0 0 0 0 I

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (4.22)

Then,

rank

⎡

⎢
⎢
⎢
⎢
⎢
⎣

sE∗ −A∗ 0 D∗

−A11 0 0
−A12 0 D1

C∗ 0 0
0 Ip 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= rankP4

⎡

⎢
⎢
⎢
⎢
⎢
⎣

sE∗ −A∗ 0 D∗

−A11 0 0
−AfA12 0 AfD1

C∗ 0 0
0 Ip 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= rank

⎡

⎢
⎢
⎢
⎢
⎢
⎣

sE∗ −A∗ 0 D∗

−AfA12 s +Af AfD1

−A11 0 0
C∗ 0 0
0 Ip 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= rank
[
sEa −Aa Da

Ca 0

]

.

(4.23)

Hence,

rank
[
sEa −Aa Da

Ca 0

]

= ñ + q, Re(s) ≥ 0. (4.24)

Combining (4.12), (4.16), and (4.24), we get the conclusion by Theorem 3.1.



Mathematical Problems in Engineering 15

Corollary 4.2. There exists a cascaded sliding mode observer for linear system if the following condi-
tions hold:

rank
[
CAD CD
CD 0

]

= rank(CD) + rank(D), (4.25)

rank
[
sI −A D

C 0

]

= n + q, Re(s) ≥ 0. (4.26)

Proof. Obviously, since E = I for linear systems, (4.5), (4.6), and (4.8) hold. Hence, the
following is to prove that (4.7) holds.

In [21], the canonical form of the linear system is given as follows:

A =
[
A1 A2

A3 A4

]

, C =
[

0 T
]

, D =
[
D1 0
0 D2

]

, A3 =
[
A3a A3b

A3c A3d

]

D1 =
[
D11

0

]

, D2 =
[

0
D22

]

,

(4.27)

where A1 ∈ R(n−p)×(n−p), A3a ∈ R(p−l)×(q−l), T ∈ Rp×p is orthogonal, D1 ∈ R(n−p)×l, D11 ∈
R(q−l)×(q−l), and D22 ∈ Rl×l are invertible.

Substituting (4.27) into (4.25), we obtain

rank
[
T 0
0 T

][
CAD CD
CD 0

]

= rank(A3aD11) + 2l. (4.28)

Combining (4.25) and (4.28), we obtain

rank(A3a) = q − l. (4.29)

Substituting (4.27) into (4.7), we obtain

rank

⎡

⎢
⎢
⎢
⎢
⎢
⎣

E A 0 D 0 0
0 E A 0 D 0
0 0 E 0 0 D
0 C 0 0 0 0
0 0 C 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= n + rank

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

In−p 0 A1 A2 D1 0 0 0
0 Ip A3 A4 0 D2 0 0
0 0 In−p 0 0 0 D1 0
0 0 0 Ip 0 0 0 D2

0 Ip 0 0 0 0 0 0
0 0 0 Ip 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 2n + p + rank

⎡

⎣

A3 D2 0 0
In−p 0 D1 0
0 0 0 D2

⎤

⎦
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= 3n − q + l + 2 rank(D22) + rank(A3a) + rank(D11)

= 3n + l + q,

rank

⎡

⎣

E A D 0
0 E 0 D
0 C 0 0

⎤

⎦ = rank

⎡

⎣

In−p 0 D1 0
0 Ip 0 D2

0 Ip 0 0

⎤

⎦ + n

= 2n + l.

(4.30)

Obviously, (4.7) holds.

Remark 4.3. For the linear system, the rank conditions (4.25) and (4.26) are identical to the
ones in [21], it is obvious that the conclusion of the paper is more general compared with
[21].

5. Simulation

A machine infinite bus system linear model is described as follows [29]:

ẋ1 = x4 ẋ2 = x5 ẋ3 = x6

ẋ4 =
1

M1
(u1 − Y12V1V2(x1 − x2) − Y15V1V5(x1 − x7) −D2x4)

ẋ5 =
1

M2
(u2 − Y21V1V2(x2 − x1) − Y25V2V5(x2 − x7) −D2x5)

ẋ6 =
1

M3
(u3 − Y34V3V4x3 − Y35V3V5(x3 − x7) −D3x6)

0 = Pch − Y51V5V1(x7 − x1) − Y52V5V2(x7 − x2)

− Y53V5V3(x7 − x3) − Y54V5V4x7,

(5.1)

where x1, x2, x3, and x7 are the generator angles, x4, x5, and x6 are the generator speeds. u1,
u2, and u3 are the mechanical power, Pch is unknown load, the nominal values of inertia M1,
M2 andM3, of dampingD1,D2, andD3, of admittance Y15, Y25, Y35, Y51, Y52, Y53, and Y54 and
of potential V1, V2, V3, V4, and V5 are shown in

M1 = 0.014 M2 = 0.026 M3 = 0.02 D1 = 0.057 D2 = 0.15
D3 = 0.11 Y15 = 0.5 Y25 = 1.2 Y34 = 0.7 Y45 = 1
Y34 = 0.7 Y12 = 1 Vi = 1 (i = 1–5).

(5.2)

It is assumed that the available measurements are the generator angles x1, x2, x3, and
x7. In order to illustrate the effectiveness of the design method, it is assumed that there exist
faults on the actuator u1 − u3. It is easy to verify that the existence conditions of sliding mode
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Figure 1: Fault signal f1 and its reconstruction signal f̂1.

observer in [32] do not hold, but the existence conditions of cascaded sliding mode observer
hold.

In the following simulation, the cascaded sliding mode observer in Section 3 is
designed to reconstruct the actuator faults.

Considering system (5.1) affected by the inputs u1 = 1, u2 = 1, and u3 = 2 + sin(5t), the
unknown load Pch = sin(t) and an uncertain admittance

Yij = Yij + ΔYij , (5.3)

where ΔYij = δij sin(ωijt), |δij | < 0.1, |ωij | < 1rd/s, i = 1, . . . , 5, j = 1, . . . , 5.
Figures 1, 2, and 3 show faults and reconstruction signals. Although there exists

unknown input and parameter uncertainty in the system, the cascaded slidingmode observer
faithfully reconstructs the faults.

6. Conclusions and Future Works

This paper proposes a fault reconstruction method for a class of descriptor systems using
cascaded sliding mode observer. The method can effectively relax the restrictions on the
existence of a sliding mode observer, which allows the applicability of our proposed method
to a wider range of systems. In our future work, the proposed actuator fault reconstruction
schemes can be extended to some sensor fault reconstruction problems by using a suitable
output filtering technique. Another interesting future research topic is to extend the current
results to fault estimation of nonlinear systems based on T-S fuzzy models [34–36].
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Figure 2: Fault signal f2 and its reconstruction signal f̂2.
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Figure 3: Fault signal f3 and its reconstruction signal f̂3.
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