194 research outputs found
Gradient type optimization methods for electronic structure calculations
The density functional theory (DFT) in electronic structure calculations can
be formulated as either a nonlinear eigenvalue or direct minimization problem.
The most widely used approach for solving the former is the so-called
self-consistent field (SCF) iteration. A common observation is that the
convergence of SCF is not clear theoretically while approaches with convergence
guarantee for solving the latter are often not competitive to SCF numerically.
In this paper, we study gradient type methods for solving the direct
minimization problem by constructing new iterations along the gradient on the
Stiefel manifold. Global convergence (i.e., convergence to a stationary point
from any initial solution) as well as local convergence rate follows from the
standard theory for optimization on manifold directly. A major computational
advantage is that the computation of linear eigenvalue problems is no longer
needed. The main costs of our approaches arise from the assembling of the total
energy functional and its gradient and the projection onto the manifold. These
tasks are cheaper than eigenvalue computation and they are often more suitable
for parallelization as long as the evaluation of the total energy functional
and its gradient is efficient. Numerical results show that they can outperform
SCF consistently on many practically large systems.Comment: 24 pages, 11 figures, 59 references, and 1 acknowledgement
End-to-end Weakly-supervised Multiple 3D Hand Mesh Reconstruction from Single Image
In this paper, we consider the challenging task of simultaneously locating
and recovering multiple hands from single 2D image. Previous studies either
focus on single hand reconstruction or solve this problem in a multi-stage way.
Moreover, the conventional two-stage pipeline firstly detects hand areas, and
then estimates 3D hand pose from each cropped patch. To reduce the
computational redundancy in preprocessing and feature extraction, we propose a
concise but efficient single-stage pipeline. Specifically, we design a
multi-head auto-encoder structure for multi-hand reconstruction, where each
head network shares the same feature map and outputs the hand center, pose and
texture, respectively. Besides, we adopt a weakly-supervised scheme to
alleviate the burden of expensive 3D real-world data annotations. To this end,
we propose a series of losses optimized by a stage-wise training scheme, where
a multi-hand dataset with 2D annotations is generated based on the publicly
available single hand datasets. In order to further improve the accuracy of the
weakly supervised model, we adopt several feature consistency constraints in
both single and multiple hand settings. Specifically, the keypoints of each
hand estimated from local features should be consistent with the re-projected
points predicted from global features. Extensive experiments on public
benchmarks including FreiHAND, HO3D, InterHand2.6M and RHD demonstrate that our
method outperforms the state-of-the-art model-based methods in both
weakly-supervised and fully-supervised manners
The Application of Downhole Vibration Factor in Drilling Tool Reliability Big Data Analytics - A Review
In the challenging downhole environment, drilling tools are normally subject to high temperature, severe vibration, and other harsh operation conditions. The drilling activities generate massive field data, namely field reliability big data (FRBD), which includes downhole operation, environment, failure, degradation, and dynamic data. Field reliability big data has large size, high variety, and extreme complexity. FRBD presents abundant opportunities and great challenges for drilling tool reliability analytics. Consequently, as one of the key factors to affect drilling tool reliability, the downhole vibration factor plays an essential role in the reliability analytics based on FRBD. This paper reviews the important parameters of downhole drilling operations, examines the mode, physical and reliability impact of downhole vibration, and presents the features of reliability big data analytics. Specifically, this paper explores the application of vibration factor in reliability big data analytics covering tool lifetime/failure prediction, prognostics/diagnostics, condition monitoring (CM), and maintenance planning and optimization. Furthermore, the authors highlight the future research about how to better apply the downhole vibration factor in reliability big data analytics to further improve tool reliability and optimize maintenance planning
Efficient Parallel Implementation of Active Appearance Model Fitting Algorithm on GPU
The active appearance model (AAM) is one of the most powerful model-based object detecting and tracking methods which has been widely used in various situations. However, the high-dimensional texture representation causes very time-consuming computations, which makes the AAM difficult to apply to real-time systems. The emergence of modern graphics processing units (GPUs) that feature a many-core, fine-grained parallel architecture provides new and promising solutions to overcome the computational challenge. In this paper, we propose an efficient parallel implementation of the AAM fitting algorithm on GPUs. Our design idea is fine grain parallelism in which we distribute the texture data of the AAM, in pixels, to thousands of parallel GPU threads for processing, which makes the algorithm fit better into the GPU architecture. We implement our algorithm using the compute unified device architecture (CUDA) on the Nvidia’s GTX 650 GPU, which has the latest Kepler architecture. To compare the performance of our algorithm with different data sizes, we built sixteen face AAM models of different dimensional textures. The experiment results show that our parallel AAM fitting algorithm can achieve real-time performance for videos even on very high-dimensional textures
Explainable AI models for predicting drop coalescence in microfluidics device
In the field of chemical engineering, understanding the dynamics and probability of drop coalescence is not just an academic pursuit, but a critical requirement for advancing process design by applying energy only where it is needed to build necessary interfacial structures, increasing efficiency towards Net Zero manufacture. This research applies machine learning predictive models to unravel the sophisticated relationships embedded in the experimental data on drop coalescence in a microfluidics device. Through the deployment of SHapley Additive exPlanations values, critical features relevant to coalescence processes are consistently identified. Comprehensive feature ablation tests further delineate the robustness and susceptibility of each model. Furthermore, the incorporation of Local Interpretable Model-agnostic Explanations for local interpretability offers an elucidative perspective, clarifying the intricate decision-making mechanisms inherent to each model’s predictions. As a result, this research provides the relative importance of the features for the outcome of drop interactions. It also underscores the pivotal role of model interpretability in reinforcing confidence in machine learning predictions of complex physical phenomena that are central to chemical engineering applications
Revisiting Single Image Reflection Removal In the Wild
This research focuses on the issue of single-image reflection removal (SIRR)
in real-world conditions, examining it from two angles: the collection pipeline
of real reflection pairs and the perception of real reflection locations. We
devise an advanced reflection collection pipeline that is highly adaptable to a
wide range of real-world reflection scenarios and incurs reduced costs in
collecting large-scale aligned reflection pairs. In the process, we develop a
large-scale, high-quality reflection dataset named Reflection Removal in the
Wild (RRW). RRW contains over 14,950 high-resolution real-world reflection
pairs, a dataset forty-five times larger than its predecessors. Regarding
perception of reflection locations, we identify that numerous virtual
reflection objects visible in reflection images are not present in the
corresponding ground-truth images. This observation, drawn from the aligned
pairs, leads us to conceive the Maximum Reflection Filter (MaxRF). The MaxRF
could accurately and explicitly characterize reflection locations from pairs of
images. Building upon this, we design a reflection location-aware cascaded
framework, specifically tailored for SIRR. Powered by these innovative
techniques, our solution achieves superior performance than current leading
methods across multiple real-world benchmarks. Codes and datasets will be
publicly available
Recommended from our members
Electrotunable liquid sulfur microdroplets.
Manipulating liquids with tunable shape and optical functionalities in real time is important for electroactive flow devices and optoelectronic devices, but remains a great challenge. Here, we demonstrate electrotunable liquid sulfur microdroplets in an electrochemical cell. We observe electrowetting and merging of sulfur droplets under different potentiostatic conditions, and successfully control these processes via selective design of sulfiphilic/sulfiphobic substrates. Moreover, we employ the electrowetting phenomena to create a microlens based on the liquid sulfur microdroplets and tune its characteristics in real time through changing the shape of the liquid microdroplets in a fast, repeatable, and controlled manner. These studies demonstrate a powerful in situ optical battery platform for unraveling the complex reaction mechanism of sulfur chemistries and for exploring the rich material properties of the liquid sulfur, which shed light on the applications of liquid sulfur droplets in devices such as microlenses, and potentially other electrotunable and optoelectronic devices
- …