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The Application of Downhole
Vibration Factor in Drilling Tool
Reliability Big Data Analytics—
A Review
In the challenging downhole environment, drilling tools are normally subject to high tem-
perature, severe vibration, and other harsh operation conditions. The drilling activities
generate massive field data, namely field reliability big data (FRBD), which includes
downhole operation, environment, failure, degradation, and dynamic data. Field reliabil-
ity big data has large size, high variety, and extreme complexity. FRBD presents abun-
dant opportunities and great challenges for drilling tool reliability analytics.
Consequently, as one of the key factors to affect drilling tool reliability, the downhole
vibration factor plays an essential role in the reliability analytics based on FRBD. This
paper reviews the important parameters of downhole drilling operations, examines the
mode, physical and reliability impact of downhole vibration, and presents the features of
reliability big data analytics. Specifically, this paper explores the application of vibration
factor in reliability big data analytics covering tool lifetime/failure prediction, prognos-
tics/diagnostics, condition monitoring (CM), and maintenance planning and optimization.
Furthermore, the authors highlight the future research about how to better apply the
downhole vibration factor in reliability big data analytics to further improve tool reliabil-
ity and optimize maintenance planning. [DOI: 10.1115/1.4040407]

Keywords: downhole drilling vibration, field reliability big data (FRBD), lifetime
prediction, prognostics/diagnostics, condition-based maintenance

1 Introduction

With drilling technology advancement, oil and gas drilling
activities more frequently occur in the rock layer of thousands of
meters depth and severe downhole conditions [1]. The challenging
downhole environment includes temperature exceeding 200 �C,
shock and vibration levels surpassing 15 g, pressure beyond
207 MPa, strong abrasive formation, horizontal path instead of
conventional vertical bore hole, and others [2,3]. Figure 1 illus-
trates several typical features of drilling activities. The harsh
downhole conditions are around or beyond operating tools’ design
specification constraints, and severely damage even the sturdiest
and most reliable components, such as printed circuit board

Fig. 1 Illustration of drilling activity [3]
1Corresponding author.
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assemblies parts in logging-while-drilling (LWD) and
measurement-while-drilling (MWD) tools [2,4,5]. This phenom-
enon leads to the increased tool failure rate, system downtime,
nonproductive time, higher maintenance and repair costs, and
lowered operation reliability for both drilling operators and serv-
ice providers [3,4,6]. Consequently, the analysis, evaluation, and
prediction of drilling tool failure and operation reliability in the
complicated downhole conditions, as well as the methodology for
optimizing maintenance plan and reducing lifecycle cost, has
become an emerging research topic in reliability engineering field
[2,4,7].

Drilling tool failure and operation reliability are affected by
combination and interaction of multiple downhole operation,
environment and dynamic factors in a complicated and uncertain
way [4,8]. These factors include drilling, operating, circulation
hours, drilled depth, temperature, vibration, shock, pressure, face
angle, torque, rotation speed, current, voltage, power cycle, well
deviation, orientation, inclination, humility, flow rate, gamma
radiation, viscosity, sand content, weight on bit (WOB), mud
type, mud weight, PH of mud, contaminants, noise levels, and
others [8]. Due to the system and human factor limitation, the
interactive impact of multiple parameters to different drilling tools
cannot be accurately measured [3,4]. However, the previous
research reveals that downhole vibration is one important factor to
weaken tool robustness, reduce tool reliability and life expectancy
[2,4,5,7,9]. In addition, downhole vibration can also cause exces-
sive stabilizer wear, well trajectory deterioration, high-frequency
noise, lower rate of penetration (ROP), decreased measurement
accuracy, and other serious issues [10]. Therefore, the research
about drilling tool vibration signal detection, monitoring, mea-
surement, data acquisition, and analysis has significance for dril-
ling optimization, efficiency, and reliability improvement
[10–12].

Increasingly, modern electronic development enables drilling
tools to be designed with automatic signal and data tracking, col-
lection, measurements, storage, and transmission functions for
effective data analytics, conditional monitoring, and drilling con-
trol [4,13–15]. A large variety of downhole drilling operation,
environment, and dynamic data is captured, measured, and col-
lected by multiple sophisticated sensors, transmitted to surface
equipment, and instantaneously streamed to the data center for
processing via surface acquisition systems. Drilling downhole
data are multivariate and of high dimension. Various variables are
tracked and information is recorded at small time intervals, which
provides periodic snapshots of downhole environments, drilling
performance, and cumulative tool usage [16]. Surface equipment
can process, decode, and interpret the downhole data or signals to
analyze the real time downhole drilling operation status [7,13].
Unquestionably, drilling downhole data are available for tracking,
analyzing, and predicting tool operational reliability, failure and
lifetime, determining tool warranty-cost, and optimizing drilling
process [17].

For global drilling operators or service providers, downhole
data from worldwide geographic drilling operations will con-
stantly accumulate and increase in sizes in surface equipment, and
eventually form massively large dataset named as field reliability
big data (FRBD), which is far beyond the storage and processing
capability of a single server [17]. FRBD is stored, transmitted,
and processed by multiple distributed servers, then extracted,
transformed, and overloaded to various enterprise databases or
warehouses for data query, collection, and advanced analytics.
FRBD has large size at Terabytes (TBs) or Petabytes (PBs) level
[17]. It also contains ample covariate and time-varying informa-
tion, and meaningful tool reliability information [17]. Thus,
FRBD provides a valuable data source for implementing a series
of data analytics methods and technologies, such as machine
learning, pattern recognition, and business intelligence for a wide
range of reliability big data analytics topics. These topics include
tool reliability assessment, modeling, prediction, failure analysis,
reliability in tool design, development, testing, maintenance

planning, and lifecycle cost analysis [18]. As a consequence, more
and more research efforts have been put on reliability big data
analytics methodologies of drilling tools [2,6,17]. To the best
knowledge of the authors, as a critical factor to affect operation
reliability, the detailed role of vibration factor in drilling tool reli-
ability big data analytics has not been systematically explored by
any academic article. Therefore, this literature review will focus
on the unexplored impacts, applications, and research of down-
hole vibration in the reliability analytics based on FRBD.

The rest of this paper is organized as follows: Section 2 dis-
cusses the drilling tool downhole vibration modes, impacts and
related research. Section 3 summarizes the features and advan-
tages of FRBD compared to traditional reliability data analytics.
Section 4 reviews the methodologies, models, techniques, and
applications of vibration factor in drilling tool reliability big data
analytics emphasizing in lifetime and failure prediction, prognos-
tics and diagnostics, condition monitoring (CM), and maintenance
optimization. Sections 3 and 4 include two types of methods and
algorithms: those generally applying on big dataset and not being
suitable for regular dataset, and those working well with both reg-
ular and big datasets. The first type mainly includes cloud comput-
ing, deep artificial neural network (ANN) and deep learning,
which may generate poor generalization with small or regular
dataset. Future research is summarized in Sec. 5, and Concluding
remarks are drawn in Sec. 6.

2 Drilling Tool Downhole Vibration

Since drilling is the process of cutting rock by chipping
or crushing, vibrations are almost unavoidable [19]. The
downhole vibration is measured, monitored, and recorded in tool
electronics sensors placed in the drilling assembly, and reported
as root-mean-square in the unit of acceleration with gravity so
that the field technicians could comprehend it and analyze the
underground condition [4,20]. The vibration in an average drilling
run is more than 8000 shuttle launches [21]. As is shown in Fig. 2,
three principle vibration modes, which include lateral vibration,
axial vibration, and torsional vibration, commonly exist in drilling
downhole operation.

Lateral vibration is transverse to the drilling tool axis, and nor-
mally occurs when the drilling string moves laterally to its ration
axis [22]. Lateral vibration is related to the bending of the drilling
axis and the resonant behaviors at some critical rotary speed as
well [9]. Lateral vibration is typically responsible for the highest
frequency dynamics (normally 50 Hz and above, or below 0.02 s
period) [23]. The influencing factors of drilling lateral vibration
include the fossa dynamics, the axial alternating force, the drill bit
displacement, the shaft lining, and the drill string construction
[20]. Drilling tools have two types of lateral vibrations: left/right
lateral motions known as Lateral Acceleration, and off-center
rotation known as Whirl (forward whirling and backward whirl-
ing), which is excited because of wellbore contact in low strength
formations [9,10]. Lateral acceleration is the most destructive
vibration mode being responsible for 75% of drill string failures
and requiring immediate attention and control [9,24,25]. Whirl is

Fig. 2 Three main modes of downhole vibration [9]
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a stable phenomenon, which can be identified with ROP increase,
a high steady torque, or the absence of stick-slip [9]. The mud
plays an important role as a nonlinear damping medium to
stabilize the bottom hole assembly (BHA) lateral vibrations [10].
However, constant exposure to lateral vibrations can cause high-
frequency bending moment fluctuations associated with large
vibration amplitude in BHA, premature BHA components fatigue
failure, wellbore washout, wear of stabilizers, and serious damage
to the drilling electronics and tool body [4,10]. Lateral vibration is
not transmitted up the drilling string and hardly detected at the
surface [9].

Axial vibration is parallel to the drilling tool axis, and occurs
when the drill string moves along its rotation axis [9,22]. Axial
vibration is more prevalent when tricone bits are applied for dril-
ling [9]. Axial vibrational can be discovered in the order of 3–20
HZ frequency [23]. Low-frequency (3–7 HZ) axial vibration is
generally associated with bouncing motions, and higher frequen-
cies (greater than 15 HZ) are relevant to the BHA resonances or
the interaction of the teeth or the cutters with the formation [26].
Axial vibration is commonly generated by lithology changes or
fractures when a new cutting pattern is initiated by the bit [9].
Axial vibration excited by the bit and formation interaction leads
to bit bounce, which causes cutting tooth wear and bearing failure
and manifests the most severe sign of axial vibration [10,27].
Axial vibration together with a roller cone bit could indicate a bit
or cone issue, while axial vibration with polycrystalline diamond
compact bit could reveal bit balling or severely worn cutting
structures [9]. Axial vibration can result in drill bits damage,
buckling fatigue, low ROP, accelerated bearing, seal, stabilizers
and top-drive wear, broken tooth cutters, and LWD/MWD tool
failures [9,27]. Axial vibration commonly exists in vertical wells
when drilling hard formations, which can manifest as WOB fluc-
tuations with relatively stable downhole torque values and be
detected at surface [10,23]. Axial vibration becomes more crucial
to implement downhole axial generator tools or drill hard
formations.

Torsional vibration, also called slick-slip vibration, is the alter-
nating phenomenon of rotational acceleration and deceleration
[9]. Torsional vibration is found in the frequency of 0.1 Hz–5 Hz
[19]. Torsional vibration exists in the rotary path of drilling string
axis, and can be observed as the variation in downhole rotation
per minute [4,9,28]. Torsional vibration is always throughout the
drilling process, and occurs as a result of the twisting of the drill
string by the interaction from the BHA and the wellbore, or from
the drill bits and the formation [9]. Torsional vibration also com-
monly appears when polycrystalline diamond compact bits are
used without depth of cut control, and it is often formation-
dependent due to lithology changes [9]. During the “stick” phase,
the drill bit and/or drill string rotation ceases, both radial and axial
accelerations are significantly reduced, close to zero or even nega-
tive, sufficient torque builds up and WOB gets lowered slightly,
which causes the drill string rotation to resume in the “slip” phase
[9,23]. Another possible reason for torsional vibration is that the
motor continues to run the drill string while the bit is stuck down-
hole [4]. Consequently, the torsional energy accumulated in the
drill string will be released once the drill bit is free, causing the
BHA to rotate in the undesired opposite direction [4]. Torsional
vibration has a remarkable effect on all downhole measurements
[23]. Torsional vibration causes irregular downhole rotation,
material fatigue, physical damage of the drilling tool and electron-
ics, and slows down the drilling process [4,29]. Torsional vibra-
tion can be detected at surface by the fluctuation of the power to
maintain a constant rotation rate [30].

Normally, the biggest risk for vibration damage comes from
heavier components [5]. Additionally, combined with other down-
hole parameters, downhole vibration is an amplifier of many pos-
sible reliability issues, and can produce more complicated and
damaging impact to drilling tools [31]. For example, the vibration
factor is especially dangerous and has more detrimental effect on
tool failure and reliability in high-temperature and high-pressure

downhole environment [21,31]. The destructive impact of vibra-
tion will be more severe with increased rotation per minute, which
causes the tool components to degrade and fail faster [2]. In addi-
tion, when large amplitude vibrations encounter resonance in dril-
ling operation, myriad damaging effects can happen, leading to
erratic downhole torque, poor bit performance, excessive drilling
component wear, MWD/LWD, top drive and other rig equipment
failures [9]. As a result, modeling and simulating vibration using
downhole vibration data, extracting its natural frequencies, and
analyzing the drilling tool dynamic behaviors are important for fail-
ure detection, analysis, and prevention [10]. Numerous research
efforts have been put on the vibration signal detection, simulation,
monitoring, transmission, modeling, testing, analysis, mitigation, and
control in the last few decades [10,12,19,20,24,25,27–30,52].

3 Reliability Big Data Analytics

3.1 Big Data Features and Technology. Big data is massive,
unstructured, and complex data set that is difficult to be handled
by traditional data processing system [53]. Big data has the large
size, which can surpass Gigabytes (GBs) and reach TBs or PBs in
size, high Velocity to meet demand or real-time requirement, and
high Variety, which includes various data types, formats, nature sour-
ces (i.e., audio, video, website, etc.), forms (i.e., structured, semi-
structured and unstructured), uses, and ways of analysis [54]. In
addition, big data can have great Variability, which can hamper data
processing and management, varied Veracity due to data inconsis-
tency, incompleteness, ambiguity, latency, deception and approxima-
tions, and Horizontal Scalability to join multiple datasets [53–55].

Big data systematic framework requires innovative data genera-
tion, acquisition, transmission, storage, search, sharing, sampling,
large-scale processing mechanisms, and analytics solutions [54].
Big data often resides on the platforms with broadly varying com-
putational and network capabilities, and data volume operated by
modern applications grows at a tremendous speed requiring TBs
or PBs space [56]. Therefore, big data posts privacy issue and
other intriguing challenges for the parallel and distributed comput-
ing platforms [56]. Consequently, several solutions including non-
relational database, in-memory database, distributed systems, and
massive parallel processing database with high performance and
platform scalability have been adopted for big data [55]. MapRe-
duce and Hadoop are respective examples of parallel processing
model and frameworks to perform big data analytics with effi-
ciency, reliability, scalability, and manageability [54].

The goal of big data analytics is to handle and analyze enor-
mous data, extract useful information and meaningful knowledge,
and gain valuable insights to support effective decision-making
from rapid growth large datasets [55]. Big data environment
requires magnetic, agile, deep analysis skills that differ from those
of the traditional enterprise data warehouse environment [55].
Several applicable methods play important roles in big data ana-
lytics, which include A/B testing, machine learning (i.e., super-
vised learning, unsupervised learning and reinforcement learning),
natural language processing, cloud computing, business intelli-
gence, advanced databases, data visualization and visual discov-
ery techniques, etc. [53–57]. Supervised learning techniques
include some classical models: partial least squares, linear regres-
sion and penalized regression for linear regression; support vector
machines, multivariate adaptive regression splines, and ANNs for
nonlinear regression; and bagging tree, boosted tree, and random
forest in regression trees [57]. Classification and regression tree is
one widely used decision tree learning techniques to construct the
exploratory data analytics and predictive models [57,58]. Data
mining techniques comprise association rules, clustering, classifi-
cation, pattern discovery, regression analysis, neural networks,
cluster analysis, genetic algorithms, decision trees, etc. [59]. Big
data analytics normally allows relaxed accuracy constraints on the
quantitative output, which can influence algorithm design [56].
Randomized algorithms project input data into sketching
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approximations of reduced size before applying the expensive
computing kernels and project back at the cost of provable bounds
for accuracy loss [56].

3.2 Field Reliability Big Data. Traditional reliability ana-
lytics is mainly conducted through the analysis of population data
from life testing experiments [60]. Traditional reliability analytics
uses empirical, probabilistic, or statistical methods including
probability distribution, statistical inference, Bayesian statistics,
Weibull regression analysis, accelerated failure-time model, pro-
portional/nonproportional hazard model, etc. [16] With the
increase in field data storage capabilities and collection methods,
TBs or PBs multidimensional field data named as FRBD has been
available, which include operation, environment, failure, degradation,
and time-varying dynamic data. FRBD can indicate system operating
conditions and health status, and enable analysis and computation of
wear, damage accumulation, life-limit, proactive inspection, and res-
toration in reliability big data context [60]. The comparison of tradi-
tional reliability data and FRBD is listed in Table 1.

3.3 Reliability Analytics Based on Field Reliability Big
Data. Reliability big data analytics is collecting, processing, and
analyzing enormous FRBD through observation, measurement,
and experiments with the below purposes:

� To check, interpret, and extrapolate the field operation, fail-
ure, maintenance, and cost data.

� To diagnose and infer reasons for tool failure mode, effect,
root cause, and corrective action.

� To predict and forecast tool field failure probability, equip-
ment lifetime, reliability, and financial needs.

� To recommend measures to minimize in-service failures and
prevent unplanned maintenance.

� To estimate cost of failure and cost of maintenance and dis-
cover measures to reduce life cycle cost (LCC).

� To assist design, testing, operation, maintenance, and war-
ranty decision-making [17].

Although reliability big data analytics could utilize some tradi-
tional reliability data analytics and general big data analytics
methods, only a few research efforts have been specifically made
to classify the entire reliability big data analytics or how to utilize
FRBD to improve reliability analytics and prediction for products
and systems [16,17,60]. The biggest challenge is how to use
FRBD to develop proper models for various applications effec-
tively [17]. Generally, two modeling efforts are involved: regres-
sion like model relating the response to dynamic covariates, and a
dynamic covariate model when predictions or other inferences are
desired [17]. Meeker and Hong provide a strategic perspective on

the potential impact of FRBD in reliability with a natural exten-
sion from traditional reliability methods and propose the ideas to
enhance the impact of the statistical and reliability analysis based
on FRBD [17,60]. Additionally, drilling industry has utilized
FRBD to perform reliability analytics and prediction to improve
drilling reliability, efficiencies, proactive, and reactive reliability
decision-making [1,2,6,7,13,61–63].

4 Reliability Big Data Analytics With Downhole

Vibration Factor

Downhole vibration factor has been applied in drilling tool reli-
ability evaluation, analysis and predictions, which can enhance
design reliability, failure monitoring and prevention, reliability
and lifetime prediction, maintenance planning and optimization,
as well as lifecycle cost reduction [60].

4.1 Fundamental Concepts for Reliability Analytics. Sev-
eral important concepts for reliability big data analytics include
reliability, availability, maintainability, mean time between/to
failures (MTBF/MTTF), mean time to repair, failure (hazard) rate,
censored data, failure probability distribution, mission profile,
equivalent circulation hour (ECH) [18,64].

Reliability is the probability that an item will perform a specific
function without failure under required conditions for a specified
period of time [18]. Availability is the probability that a product is
operable and in a committable state without failure or undergoing
repair [18]. Maintainability is the probability that a failed product
is repaired within a given amount of time [18]. Meantime
between/to failures (MTBF/MTTF) is the average time to failure
(TTF) for a nonrepairable/repairable system [18]. High MTBF/
MTTF normally indicates a system with high reliability. Failure
(hazard) rate (k, lambda) is the frequency that a component fails
per unit of time, and is reciprocal to MTBF/MTTF [18]. A drilling
tool’s lifecycle failure rate normally follows bath tube curve.2

Typically, the more severe downhole vibration is, the lower
MTBF and the higher failure rate the drilling tool has. Analyzing
the correlation between vibration value, MTBF and failure rate
from FRBD will assist drilling company to predict specific tool
reliability in different downhole environment, and set up applica-
ble MTBF and failure rate for each future drilling activities.

Failure data is categorized into four different types [18]:

� Exact failure time data, in which the exact failure time is
clearly known;

� Right-censored data, in which it is only known that the fail-
ure happened or would have happened after a specific time,

Table 1 Comparison of Traditional Reliability Data and FRBD [16,17,60]

Traditional reliability data FRBD

Experiments and accelerated life testing Operation, environment, failure, degradation, and dynamic
Aggregated data on the population units Individual unit usage data
Regular dataset (<¼ GBs) Large dataset (>¼ TBs or PBs)
Include intended usage data only Include intended and unintended in-field usage data for better reliability

analysis.
Lack covariate information Have ample and dynamic covariate information
Enables reactive maintenance and inspection on population units Enables proactive preventive maintenance and inspection on the individual

unit.
Failure and censoring time can be binned into intervals when no
covariate exists

Can be divided into in small subdataset for analysis by proper binning of
observations.

Not suitable to be stratified Can be stratified in logical, manipulated, and homogeneous subgroups for
better modeling.

Fewer risk of excessive sampling Risk of excessive sampling at a too high frequency exists
Difficult for long-term reliability assessment Better for long-term reliability prediction
Less cost for data retrieval, storage, manipulation, aggregation, and
analysis

More cost from sensors, data retrieval, acquisition, storage, manipulation,
aggregation, complex system, and analysis.

2https://en.wikipedia.org/wiki/Bathtub_curve
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and the common scenario is that an item is still functioning
when the test ends;

� Left-censored data, in which it is only known that the failure
happened before a particular time, and the common scenario
is the item is not checked prior to being tested but is periodi-
cally examined and a failure is discovered at the first
examination;

� Interval-censored data, in which it is only known that the
failure happened between two different times.

Common failure probability distributions for reliability analysis
include Weibull, exponential, lognormal, normal and other distri-
butions. Weibull distribution is one fundamental reliability distri-
bution and it is widely used in tool failure, maintenance, and
lifecycle analysis. Exponential distribution is applicable when the
tool passes “infant mortality” stage and has nearly constant failure
rate [18]. Lognormal distribution is suitable to model TTF and
sometimes time to repair for electronic and mechanical products

[18]. Normal distribute can be applied at the tool wear-out phase
with an increasing failure rate [18]. Maximum likelihood
approach is commonly used in parameters estimation, extrapola-
tion, and statistical predication [17].

Mission Profile is the specific technical description of the oper-
ating conditions of a drilling task, which always include the down-
hole temperature, stress, vibration, torque, flow rate, electricity,
well deviation, etc. Analyzing and evaluating vibration data in
FRBD provides better opportunity to measure and visualize dril-
ling tool actual usage information for reliability target generation
and prediction. Drilling tool life extension can be obtained by
derating the mission (e.g., lowering drilling rotational speed to
reduce the impact from vibration-induced damages) [4].

Equivalent circulation hour is developed to consider the factors
affecting the reliability of tools for maintenance recommendation
[6]. ECH essentially adjusts a tool’s running time based on multi-
ple factors including actual usage, environmental conditions,
downtime, transportation, etc. [6] ECH adjustment standard is
determined by engineering analysis, environmental testing, accel-
erated testing, and diagnostics/prognostics about various factors’
contribution to tool age and degradation [6]. Generally, a tool that
operates in extremely high vibration has greater ECH than actual
running hours as tools experience more wear in more severe vibra-
tion than in normal conditions. Sensor data (e.g., vibration sensor,
actuator pressures, and pressure transducer readings) has been uti-
lized to track environmental conditions, identify the part degrada-
tion, and damage, calibrate ECH and trigger appropriate level of
preventive maintenance (PM) [6].

4.2 Life Time/Failure Prediction. Due to the availability of
information-rich FRBD for failed and surviving units, the restric-
tions of simulating actual operating environment with physics-
based methods, and the accuracy issue of predicting field reliabil-
ity using the laboratory test data, FRBD-driven methodologies for
TTF modeling and reliability prediction have gained momentum
[4,16,17,65]. Lifetime and failure prediction provides a cutting-
edge way to recognize the precursors of costly field failures by
using statistical modeling, data mining, machine learning, and
other advanced analytics methods [2]. Efficiently predicting fail-
ure and the remaining life of the wearing component is crucial to

Fig. 3 Field reliability big data driven lifetime and failure pre-
diction process [2]

Table 2 Applications of tool life time/failure prediction using FRBD with vibration factor

Author Application Methods Pros/Cons

Sutherland et al. [71] Electronic motor life distribution Data mining, statistical approaches Easy to implement./Sensitive to varia-
tion or noise.

Chi et al. [72] Predicting the fatigue life of drill string Computerized model, analytical method Rigorously coupling the axial and tor-
sional vibration./May not be suitable for
various downhole drilling operation.

Yan et al. [73] On-line assessment and performance
prediction of remaining tool life in dril-
ling operations.

Hybrid method, logistic regression anal-
ysis, Autoregressive moving average
model

A feasible method to detect tool wear
and predicting tool remaining life./Needs
more validations from application.

Wu et al. [74] Develops an integrated decision support
system for failure/lifetime prediction,
PM of rotational tools

ANN, Cost matrix Be effective in machine remaining life
prediction./Be complex to implement.

Pham et al. [75] Proposes the hybrid model to estimate/
forecast the machine state.

Hybrid model, ARMA, GARCH Gets verified in empirical results./Needs
more validation from practice.

Hong et al. [17,76] Field failure prediction based on failure-
time data and dynamic covariate with
unit-to-unit variability for individual
units.

Accelerated failure time model, multi-
variate time series, and cumulative expo-
sure model.

Presents a general framework for predic-
tion using failure time data.

Carter-Journet et al. [2–4] Drilling tool failure and lifetime
prediction.

Parameter estimation, statistical analysis,
Bayesian math

Improves life time prediction perform-
ance./Be complex to implement.

Frenzel et al. [77] Drilling optimization with predicting
and resolving drilling dysfunctions and
failures in real-time.

Drill string modeling, optimization
system

Has efficiency in mitigating drilling
dysfunction.
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prevent costly downhole in-service failures, eliminate unnecessary
maintenance, improve reliability and drilling performance, reduce
downtimes and failure risk, schedule timely maintenance, lessen
maintenance and failure costs, and enhance dexterity to the
decision-making [2,4]. FRBD driven lifetime and failure predic-
tion has the following iterative process in Fig. 3.

Vibration combined with other downhole factors such as tem-
perature, shock, and resonance have a damaging impact on dril-
ling tool failure and lifetime [4,21,47,66–68]. Table 2 lists
research efforts on applying vibration factor in reliability model-
ing and predictions based on FRBD by statistical modeling,
Bayesian method, data mining, Monte Carlo simulation, advanced
computing, and analytics methods [17,69,70].

4.3 Prognostics/Diagnostics. 99% tool failures are preceded
by certain conditions, signs, or special indications, which include
abnormal vibration [11,78]. Diagnostics can be used to pinpoint
sources of failure, detect and isolate specific faults, and identify
fault severity and effect for making proper repair, trending spe-
cific failures, and performing effective reliability estimation
[6,79] Prognosis is an estimation of time to failure and risk for
existing or potential failure modes, which utilizes physics princi-
ples, present and past conditions, and data techniques to predict
the future condition and reliability, hidden damages, and remain-
ing life [79,80]. Prognostics can prevent unexpected failures,
assist maintenance, repair and replacement decision-making, and
save maintenance costs [11,81]. Prognostics health management
is the discipline consisting of methods and technologies to assess
the product reliability in its actual life cycle conditions so as to
determine the failure probability and mitigate system risk, which
is especially useful for sensitive and complex system health moni-
toring [11,82]. Prognostics health management highly relies on
the sensor technology to obtain long-term accurate information

for anomaly detection, fault isolation, and fast failure prediction
[11].

Several existing prognostic models can be roughly allocated
into four categories: physical model, signal-based model,
reliability-based model, and hybrid model, all of which utilize
regression or extrapolation techniques to forecast the future based
on the historical and current conditions [83]. Reliability-based
model is reasonably well advanced for maintenance prediction
[83]. With enhanced modeling capabilities from big data, FRBD
can be used in prognostics to provide improved short-term and
long-term predictions of the remaining life of a system [17]. As an
example, downhole vibration data from sensors can indicate the
onset of abnormal wear or damage, and changes in degradation
rate [17]. The existing and potential applications of using FRBD
with vibration for prognostics/diagnostics and reliability analysis
are listed in Table 3.

4.4 Condition Monitoring. Condition monitoring is a pro-
cess to continuously monitor certain signals with some types of
sensors and appropriate indicators to indicate the equipment con-
dition in diagnostics/fault detection and identify the issues of
machinery system [91,92]. Build-in and multifunctions sensor
technology and strategies, sensor data (e.g., vibration, thermo-
graph, temperature, pressure, voltage, acoustic emission data),
process monitoring, and signal-detection algorithms can be used
to detect unusual system degradation, undesirable system states,
unsafe operating conditions, and precursors to system failure [17].
Then, corresponding preventive measures can be used to protect a
system by reducing load to safe levels or shutting the system
down [17]. Reliability estimation from condition data generates a
time series of reliability evaluations concerning operation time,
which will be projected into the future for prediction or prognosis
[16]. Condition monitoring systems support prognostic/diagnostic
models, the detection of potential failures, and the prediction of

Table 3 Applications of tool prognostics/diagnostics using FRBD with vibration factor

Author Application Methods Pros/Cons

Vlok et al. [84] Determine the optimal replace-
ment policy for reliability critical
components.

Weibull proportional hazards
model

Gets validated using data from
operation plant

Mishra et al. [85] Discusses a generic process for
lifetime consumption monitoring
of electronics.

Physics-of-failure based stress,
damage models

Testing result correlates well
with empirical results.

Vlok et al. [86] Utilize historic failure data and
diagnostic measurements to esti-
mate residual life and determine
PM.

Proportional intensity Models Easy to justify and benchmark

Sun et al. [87] Mechanical system hazard esti-
mation with accelerated life test
and CM data.

Proportional covariate model Reduces the number of acceler-
ated life tests and is easy to
implement.

Zhang et al. [83] Use of eigenvector analysis for
machinery condition prognosis;
Pump CM as an example

Eigenvector analysis, Principal
component, Multivariate analysis

Get validated using pump data
during flow fluctuation.

Saxena et al. [88] Identifies near optimal design
parameters of diagnostic systems
for monitoring mechanical
systems.

Genetic algorithms, ANN,
Hybrid techniques

Effective and powerful./Addi-
tional constraint of available
computational time. May not
suitable for some complex
system.

Chen et al. [89] Investigate the intelligent proc-
essing of mechanical component
health data to improve prognos-
tics and diagnostics.

Artificial intelligence, data analy-
sis, data mining, statistics

Improves equipment manage-
ment./Higher computation
requirement.

Zhao et al. [90] Assessing the operation and
product reliability of directional
drilling systems

Dynamic factor model Improves KPI reliability assess-
ment in directional drilling
system.
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operation reliability at an early stage in order to minimize down-
time and maintenance costs [11].

Vibration monitoring, which can be carried out on-line through
periodical or continuous practice, is the most popular CM tech-
nique in machine health and reliability assessment, especially for
rotating equipment [11,83]. International Organization for Stand-
ardization (ISO) standard adopts the root-mean-square value of
vibration signals to differentiate machine health conditions (ISO
10816 1998). Multivariate analysis can be applied in the moni-
tored vibration signal to extract features and identify machine
health information and reliability presentation [83]. Table 4 lists
existing examples of vibration monitoring in the analysis of
FRBD.

4.5 Maintenance Planning and Optimization. The combi-
nation of conditional monitoring, diagnostics, and prognostics
leads to condition-based maintenance (CBM), time and cost
reduction, and increased availability [6,80]. Condition-based
maintenance is one form of PM that performs a real-time assess-
ment of equipment conditions, calculates, and recommends main-
tenance actions based on the information collected through
condition monitoring process to maximize the effectiveness of
PM decision-making. CBM focuses on the system failure prog-
nostic and remaining useful life estimation/prediction approach
with historical and real-time data instead of predetermined failure
time limit approach to determine appropriate maintenance
[11,96]. Maintenance plants can incorporate risk-informed CBM
decision into reliability constraint and spare part forecasting for
tool maintenance or replacement [3]. CBM available input can
include historical and real-time field data of the monitored param-
eters (e.g., vibration, temperature, sound, heat, noise levels, etc.),
effect data (e.g., field failure, malfunction, degradation, etc.),
prognostic information, and maintenance historical data from the
shop [97]. CBM data can be classified into three types: value type,
waveform type, and multidimensional type [81]. Vibration and
acoustic data are examples of waveform type data, which have
noise effects or unwanted signal that should be minimized or
eliminated [11]. CBM desired output can be recommended main-
tenance actions (system restart, lube oil change, lower pressure,

etc.), the optimal time and cost for each action, the remaining use-
ful life, failure threshold, and utility function after each action as
functions of time, cost, and safety [97]. CBM plays a crucial role
in the oil and gas drilling facilities due to the criticality and
capital-intensive investments of the oil and gas drilling activities,
which can cause possibly unaffordable financial and severe envi-
ronmental consequences from unexpected failures [97,98]. Some
critical drilling equipment employs diverse monitoring sensors
and means to detect early deterioration and predict failures for
CBM application [97].

The complexity of CBM data analysis and modeling heavily
relies on condition data type, volume, and complexity [11]. The
high frequency of real-time data calls for an appropriate big data
infrastructure and system architecture [97]. With the era of big
data, CBM requires large data samples, high data collection cost,
complex data cleaning process, real-time and data-rich environ-
ments for prognostic-based decision support [11,97,99]. FRBD
poses great opportunities to CBM data processing, analysis and
modeling, knowledge discovery and provision of CBM recom-
mendations [97]. FRBD enables prognostic-based decision sup-
port for CBM to cope with several challenges such as highly
dynamic and real-time information, to predict the equipment
health state and update maintenance-related recommendations
continuously [97]. Machine learning, data mining, decision sup-
port methods, artificial intelligence algorithms, regression, and
extrapolation are used for handling large volume of real-time con-
dition data and providing maintenance recommendations based on
tool health predictions [97]. An example of oil and gas drilling
tool life management and CBM work flow is shown in Fig. 4.

Another important maintenance concept is reliability centered
maintenance (RCM), which is defined by Electric Power Research
Institute (EPRI) as a systematic consideration of system functions,
the way functions fail, and a priority-based consideration of safety
and economics that identifies applicable and effective PM tasks
[100]. The objective of RCM is to reduce maintenance and LCC,
by focusing on the critical functions of the system, and removing
maintenance actions, which are not strictly necessary [100].
Developing the optimal drilling tool RCM policies requires mod-
eling and analysis of FRBD, equipment quality, job and waiting
time, transportation and cost factors and algorithm of predicting

Table 4 Applications of health and reliability assessment using FRBD with vibration monitoring

Author Application Methods Pros/Cons

Ocak et al. [93] Fault detection and diagnosis
scheme for rolling element
bearings.

Hidden Markov modeling Proven to have high accuracy

Zhang et al. [16] Reliability analysis/prediction
with degradation CM data

Recursive Bayesian analysis Enables reliability analysis and
prediction using degradation data

Han et al. [94] CM fault diagnosis system for
induction motors based on motor
vibration signals.

Fault diagnosis system, Pattern
recognition, and genetic
algorithm

Test validates system perform-
ance./High computational
requirement.

Heidarbeigi et al. [52] Develops a neural network simu-
lator built for prediction of faults
in gearbox.

Back propagation learning,
Multi-layer ANN

Has adaptability to different
architectures./Consumes comput-
ing resources and needs long
training time.

Zarei et al. [50] Fault diagnose and detect bearing
defects of induction motors

Intelligent method based on
ANN

Performance is validated./Con-
sumes computing resources and
needs long training time.

Abu-Mahfouz et al. [95] Presents an effective drill wear
feature identification scheme
based on robust clustering
techniques.

Robust clustering techniques,
Fourier transform, statistics

Clustering results can be used to
design classifiers.

Kumar et al. [96] Detection and classification for
the degree or magnitude of
effect for tool wears and faults in
drilling process.

Support vector machine, ANN,
Bayes classifier

Has feasibility and the perform-
ance is validated.
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performance and consumed life as the function of usage, failure,
and maintenance history [4,6,97]. As a crucial drilling tool opera-
tional factor, vibration factor has been applied in the analytics of
FRBD for maintenance optimization, which is listed in Table 5.

5 Future Work

Although FRBD obtained from field usage has tremendous
value in reliability analysis and prediction, reliability big data ana-
lytics including vibration factor by itself cannot solve all drilling
tool reliability issues especially when the accuracy of

extrapolation is highly demanded [17,60]. Future research is sum-
marized as below:

(1) Most analytics based on FRBD focuses on individual reli-
ability characteristics or failure criteria, while drilling tools
have more than one failure modes simultaneously caused
by vibration together with other downhole factors. There-
fore, it is necessary to link and analyze downhole vibration
data with multiple downhole factors, coupled failure
modes, and physics-based models of drilling tools interac-
tively, emphasizing on the failure mode with greater cost
impact [36]. Model and predict the system reliability

Fig. 4 Drilling tool life management and CBM work flow [2,4]

Table 5 Applications of maintenance planning and optimization using FRBD with vibration factor

Author Application Methods Pros/Cons

Liu et al. [101] Integrate data collection and
vibration analysis of hydropower
turbine to assess equipment con-
ditions and support maintenance
effectively.

Advanced vibration analysis
algorithms, System dynamics
identification, CBM

Has potentials to improve main-
tenance decision-making

Orhan et al. [35] Detecting bearing defects on
machines as a PM strategy

Spectral analysis, Statistical
analysis

Easy to understand. Get validated
by Rolling element bearing cases

Heng et al. [102] Predict machinery failure and
estimate survival probabilities for
CBM.

ANN, CBM, Kaplan–Meier
estimator

Can predict with more accuracy./
Consumes computing resources
and needs long training time.

Niu et al. [103] Uses RCM and employs data
fusion strategy to improve CM
and health prognostics.

RCM, Data fusion technology Performance can be obtained
with good generality

Cho et al. [6] Review the tradeoffs of R&M
costs and failure cost; Optimize
the repair and maintenance
cycles to minimize LCC

RCM, Cost Tradeoffs Optimizes R&M cost and cost of
failure

Kale et al. [4,7] Utilizes predictive life models
and real-time data to optimize
operation and maintenance deci-
sion-making.

Predictive analytics, CBM Improves the maintenance pre-
diction performance./Complex to
implement
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according to the interaction of hardware and software reli-
ability instead of isolating them [60]. Detailed knowledge
about the physics of failure and certain expert opinions are
critical to justify the extrapolation and provide proper
degree of precision assurance for reliability prediction
based on FRBD with vibration factor [17].

(2) Collect, analyze, and integrate FRBD including vibration
from the early stages of product design in an integrated reli-
ability design environment [60]. Combine information
from different sources such as data from product design,
laboratory experiment, accelerating life test, manufacturing
quality, field operation, maintenance workshop, and engi-
neering knowledge to enable reliability analytics to be per-
formed in a broader scale and produce an enhanced
influence from product design. Especially, degradation data
caused by downhole vibration have valuable dynamic cova-
riate information to improve reliability predictions on
severe vibrations, whirl, or bump events [16,63]. Autocor-
relation in the covariate process can be modeled to reduce
analytical time and improve efficiency [16].

(3) Nowadays, although several advanced statistical and ana-
lytical methods and algorithms have been discovered for
prognostic-based decision support for CBM implementa-
tion, most solutions cannot adequately support proactive
maintenance decision-making with vibration factor [97]. In
addition, there is limited research on the deep learning
application in reliability analysis on high-dimensional
FRBD with respect to vibration [104]. One future research
will focus on the utilization, examination, and incorpora-
tion of additional statistical modeling, machine learning,
ANN, decision methods, especially deep learning in dril-
ling tool lifetime prediction, maintenance recommendation,
and economic replacement time decision support using
FRBD with vibration factor.

(4) Common approaches to apply vibration factor in drilling
tool reliability big data analytics lack the adequate consid-
eration of data quality issues and integrity measurement.
Moreover, human errors are can be discovered in each
phase of reliability big data analytics [105]. Generally, big
data analytics allows looser accuracy constraints on the
quantitative output [56]. Thus, the estimated failure distri-
bution cannot fit the recorded failure point or reflect reli-
ability reality well due to data quality issues [106]. More
research is required to keep the FRBD analytics with vibra-
tion factor updated with the cutting-edge data quality and
integrity management, human error reduction, and noise
reduction techniques [16].

6 Conclusion

Oil and gas drilling tools can experience fluctuating and
extreme downhole parameters in operation process, which
increases failure rate and reduces operational reliability signifi-
cantly. Downhole vibration factor adversely affects tool operation
reliability, system availability, failure rate, maintenance activity,
etc. Meanwhile, complicated drilling activities generate heteroge-
neous and information-rich data (FRBD) with abundant tool oper-
ation, environment, real-time dynamics and system health
information, unprecedented complexity, distinctive scale, tempo-
ral dimensional and data type varieties, which creates broad
opportunities for the reliability big data analysis. Improving dril-
ling reliability and reducing operation cost propels the advance-
ment of reliability analysis and prediction based on FRBD with
vibration factor.

This paper reviews drilling tool downhole crucial factors, the
modes, impacts, monitoring, measurement, modeling, analysis,
and control methods of downhole vibration, and the features and
analytical techniques of FRBD. Furthermore, this paper specifi-
cally explores the existing and potential methodologies, models,

and application for vibration factor in drilling tool reliability big
data analytics including lifetime and failure prediction, prognos-
tics and diagnostics, condition monitoring, and maintenance plan-
ning and optimization. Finally, the paper proposes the future
trends about the application of downhole vibration factor in reli-
ability big data analytics of drilling tools.
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