207 research outputs found

    SA-BEV: Generating Semantic-Aware Bird's-Eye-View Feature for Multi-view 3D Object Detection

    Full text link
    Recently, the pure camera-based Bird's-Eye-View (BEV) perception provides a feasible solution for economical autonomous driving. However, the existing BEV-based multi-view 3D detectors generally transform all image features into BEV features, without considering the problem that the large proportion of background information may submerge the object information. In this paper, we propose Semantic-Aware BEV Pooling (SA-BEVPool), which can filter out background information according to the semantic segmentation of image features and transform image features into semantic-aware BEV features. Accordingly, we propose BEV-Paste, an effective data augmentation strategy that closely matches with semantic-aware BEV feature. In addition, we design a Multi-Scale Cross-Task (MSCT) head, which combines task-specific and cross-task information to predict depth distribution and semantic segmentation more accurately, further improving the quality of semantic-aware BEV feature. Finally, we integrate the above modules into a novel multi-view 3D object detection framework, namely SA-BEV. Experiments on nuScenes show that SA-BEV achieves state-of-the-art performance. Code has been available at https://github.com/mengtan00/SA-BEV.git

    Combinatorics Problems: a Constructive Resource for Finding Volumes of Fractional Dimension?

    Get PDF
    Fractions and volume are two challenging domains, which initially come together in the Common Core State Standards in Mathematics (CCSS-M) in the 7th grade where students learn about volumes of rectangular prisms with fractional dimensions. However, relatively little research has been conducted on how students’ reason about these volumes. To address this dearth of research, we designed a teaching experiment based on a central conjecture that combinatorics problems could be a constructive resource in the development of volumes with fractional dimension. In this paper, we demonstrate the central conjecture by providing two cases of how pre-service secondary teachers (PSSTs) reasoned with volumes of fractional dimension. A contribution of this study is that it offers an expansion and novel combination of a number of empirically grounded theoretical constructs

    Allocating Limited Resources to Protect a Massive Number of Targets using a Game Theoretic Model

    Full text link
    Resource allocation is the process of optimizing the rare resources. In the area of security, how to allocate limited resources to protect a massive number of targets is especially challenging. This paper addresses this resource allocation issue by constructing a game theoretic model. A defender and an attacker are players and the interaction is formulated as a trade-off between protecting targets and consuming resources. The action cost which is a necessary role of consuming resource, is considered in the proposed model. Additionally, a bounded rational behavior model (Quantal Response, QR), which simulates a human attacker of the adversarial nature, is introduced to improve the proposed model. To validate the proposed model, we compare the different utility functions and resource allocation strategies. The comparison results suggest that the proposed resource allocation strategy performs better than others in the perspective of utility and resource effectiveness.Comment: 14 pages, 12 figures, 41 reference

    Topological design of continuum structures with global stress constraints considering self-weight loads

    Get PDF
    This paper proposes an approach for the topological design of continuum structures with global stress constraints considering self-weight loads. The rational approximation of material properties is employed to describe the material distribution for overcoming the parasitic effect for low densities. The structure volume is used as the objective function to be minimized. The local stress constraints for all elements are aggregated into a global stress constraint using the improved P-norm method. A model for the stress-constrained topology optimization of continuum structures considering the self-weight loads is established. The projection filtering method is adopted to avoid numerical instability, and the topology optimization problems are solved using the method of moving asymptotes. Several numerical examples are presented to demonstrate the validity of the proposed method. The structures obtained by the proposed method can have better performance. The effects of different norm parameters, stress constraints and mesh densities on the topological structures are analyzed

    Perinatal Blockade of B7-1 and B7-2 Inhibits Clonal Deletion of Highly Pathogenic Autoreactive T Cells

    Get PDF
    A number of in vitro studies have suggested that costimulatory molecules B7-1 and B7-2 and their receptor CD28 can promote clonal deletion, and limited in vivo studies have indicated that CD28 is involved in the clonal deletion of some T cells. However, the significance of B7-mediated clonal deletion in preventing autoimmune diseases has not been studied systematically. Here we report that the perinatal blockade of B7-1 and B7-2 substantially inhibits the clonal deletion of T cells in the thymus and leads to an accumulation of T cells capable of inducing fatal multiorgan inflammation. These results reveal a critical role for costimulatory molecules B7-1 and B7-2 in deleting pathogenic autoreactive T cells in the thymus. The critical role of B7-1 and B7-2 in T cell clonal deletion may explain, at least in part, the paradoxical increase of autoimmune disease in mice deficient for this family of costimulatory molecules, such as cytotoxic T lymphocyte associated molecule 4, CD28, and B7-2. The strong pathogenicity of the self-reactive T cells supports a central hypothesis in immunology, which is that clonal deletion plays an important role in preventing autoimmune diseases

    The design, implementation, and impact of a collaborative responsive professional development (CRPD) model

    Get PDF
    It is important to design professional development (PD) around teachers’ professional thinking and needs. Researchers have explored how teachers center on and build upon students’ thinking in mathematics teaching, but few studies have investigated how to identify and be responsive to teachers’ ongoing needs while planning and enacting effective PD. As such, this study presents a Collaborative Responsive Professional Development (CRPD) model that arose from efforts to elicit and validate teachers’ voices to design PD experiences that were relevant and meaningful to them. We share the rationale of the model design, its implementation during a two-year PD project, and its impact on teachers’ instructional practice

    Tenofovir alafenamide versus entecavir for treating hepatitis B virus-related acute-on-chronic liver failure: real-world study

    Get PDF
    Background and aimsReal-world data regarding hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) patients receiving tenofovir alafenamide (TAF) as an antiviral drug are limited. Hence, we evaluated the efficacy and kidney safety of TAF among this population.MethodsA total of 272 HBV-related ACLF patients hospitalized at Xiangya Hospital of Central South University were enrolled in this retrospective research. All patients received antiviral therapy with TAF (n = 100) or ETV (n = 172) and comprehensive medical treatments.ResultsThrough 1:1 propensity score matching, 100 patients were finally included in each group. At week 48, the survival rates without transplantation of the TAF group and ETV group were 76.00 and 58.00%, separately (P = 0.007). After 4 weeks of treatment, the TAF treatment group exhibited a significantly decline in HBV DNA viral load (P = 0.029). The mean estimated glomerular filtration rate was apparently improved in the TAF group compared with the ETV group (TAF 5.98 ± 14.46 vs. ETV 1.18 ± 18.07 ml/min/1.73 m2) (P < 0.05). There were 6 patients in TAF group and 21 patients in ETV group with chronic kidney disease (CKD) stage progression ≥ 1. By contrast, the ETV treatment group has a greater risk of renal function progression in CKD 1 stage patients (P < 0.05).ConclusionThis real-world clinical study showed that TAF is more effective than ETV in reducing viral load and improving survival rate in HBV-ACLF patients and the risk of renal function decline is lower.Clinical trial registrationhttps://ClinicalTrials.gov, identifier NCT05453448

    Dynamic conformational changes of a tardigrade group-3 late embryogenesis abundant protein modulate membrane biophysical properties

    Get PDF
    A number of intrinsically disordered proteins (IDPs) encoded in stress-tolerant organisms, such as tardigrade, can confer fitness advantage and abiotic stress tolerance when heterologously expressed. Tardigrade-specific disordered proteins including the cytosolic-abundant heat-soluble proteins are proposed to confer stress tolerance through vitrification or gelation, whereas evolutionarily conserved IDPs in tardigrades may contribute to stress tolerance through other biophysical mechanisms. In this study, we characterized the mechanism of action of an evolutionarily conserved, tardigrade IDP, HeLEA1, which belongs to the group-3 late embryogenesis abundant (LEA) protein family. HeLEA1 homologs are found across different kingdoms of life. HeLEA1 is intrinsically disordered in solution but shows a propensity for helical structure across its entire sequence. HeLEA1 interacts with negatively charged membranes via dynamic disorder-to-helical transition, mainly driven by electrostatic interactions. Membrane interaction of HeLEA1 is shown to ameliorate excess surface tension and lipid packing defects. HeLEA1 localizes to the mitochondrial matrix when expressed in yeast and interacts with model membranes mimicking inner mitochondrial membrane. Yeast expressing HeLEA1 shows enhanced tolerance to hyperosmotic stress under nonfermentative growth and increased mitochondrial membrane potential. Evolutionary analysis suggests that although HeLEA1 homologs have diverged their sequences to localize to different subcellular organelles, all homologs maintain a weak hydrophobic moment that is characteristic of weak and reversible membrane interaction. We suggest that such dynamic and weak protein-membrane interaction buffering alterations in lipid packing could be a conserved strategy for regulating membrane properties and represent a general biophysical solution for stress tolerance across the domains of life.</p

    Dynamic conformational changes of a tardigrade group-3 late embryogenesis abundant protein modulate membrane biophysical properties

    Get PDF
    A number of intrinsically disordered proteins (IDPs) encoded in stress-tolerant organisms, such as tardigrade, can confer fitness advantage and abiotic stress tolerance when heterologously expressed. Tardigrade-specific disordered proteins including the cytosolic-abundant heat-soluble proteins are proposed to confer stress tolerance through vitrification or gelation, whereas evolutionarily conserved IDPs in tardigrades may contribute to stress tolerance through other biophysical mechanisms. In this study, we characterized the mechanism of action of an evolutionarily conserved, tardigrade IDP, HeLEA1, which belongs to the group-3 late embryogenesis abundant (LEA) protein family. HeLEA1 homologs are found across different kingdoms of life. HeLEA1 is intrinsically disordered in solution but shows a propensity for helical structure across its entire sequence. HeLEA1 interacts with negatively charged membranes via dynamic disorder-to-helical transition, mainly driven by electrostatic interactions. Membrane interaction of HeLEA1 is shown to ameliorate excess surface tension and lipid packing defects. HeLEA1 localizes to the mitochondrial matrix when expressed in yeast and interacts with model membranes mimicking inner mitochondrial membrane. Yeast expressing HeLEA1 shows enhanced tolerance to hyperosmotic stress under nonfermentative growth and increased mitochondrial membrane potential. Evolutionary analysis suggests that although HeLEA1 homologs have diverged their sequences to localize to different subcellular organelles, all homologs maintain a weak hydrophobic moment that is characteristic of weak and reversible membrane interaction. We suggest that such dynamic and weak protein-membrane interaction buffering alterations in lipid packing could be a conserved strategy for regulating membrane properties and represent a general biophysical solution for stress tolerance across the domains of life.</p
    • …
    corecore