99 research outputs found

    Perbedaan Kualitas Spermatozoa Mencit Jantan (Mus Musculus L) Yang Diberikan Vitamin C Setelah Pemaparan Asap Rokok

    Full text link
    : Vitamin C is an antioxidant that suppresses the oxidative stress caused by cigarette smoke purpose of this study demonstrate whether vitamin C can provide a different quality of sperm male mice Mus musculus L are given exposure to cigarette smoke. Methodology: The study subjects are 32 male mice Mus musculus L, which were randomly divided into 2 groups. The first group was the control group (K) who received treatment exposure from cigarette smoke without giving vitamin C and the second group is the treatment group (P) are given exposure from cigarette smoke and vitamin C dose of 0.40 mg / gBB /day. The treatment during 30 days, on day 31 the mice were terminated, and then examined the quality of spermatozoa motility of spermatozoa, sperm concentration and morphology of spermatozoa. Results: Test oneway ANOVA on the mean motility of spermatozoa showed Ma control group (47,38%), Mb (11,88%), Mc (18,13%), Md (22,63%) and the Ma treatment group (11.68%), Mb (17,04%), Mc (35,77%), Md (16,5%). The mean concentration of spermatozoa obtained 63,34x105/ml control group and the treatment group and the mean morphology of spermatozoa 81,75x105/ml control group showed normal morphology 50% and abnormal morphology 56,189% while the treatment group showed normal morphology 60% and 40% abnormal. Result from Oneway ANOVA test there are differences significant in the morphology of spermatozoa, concentration of spermatozoa, sperm concentration, and sperm morphology between groups (p <0,05). Conclusion: Vitamin C can improve the quality of spermatozoa after exposure to cigarette smoke

    Antioxidant Metabolism, Photosystem II, and Fatty Acid Composition of Two Tall Fescue Genotypes With Different Heat Tolerance Under High Temperature Stress

    Get PDF
    Tall fescue (Festuca arundinacea Schreb.) is a typical and widely used cool-season turf grass. High temperature is a key factor that limits its utility. The objectives of this study were to investigate the behaviors of fatty acid composition and its gene expression patterns in heat-resistant genotype “TF71” and heat-sensitive genotype “TF133” exposed to heat stress (40/35°C, 14/10 h), and to broaden our comprehension about the relationship between heat tolerance and fatty acid function. The result showed that heat stress increased the malondialdehyde (MDA) content and relative electrolyte leakage (EL), but decreased the level of chlorophyll and the activity of superoxide dismutase (SOD) and peroxidase (POD) when compared to the controls, to a greater extent in “TF133.” This result proved that “TF71” had superior high-temperature resistance. Furthermore, comparing the changes in the composition of fatty acid and the expression of the genes involved in its synthesis between the two different genotypes under heat stress, we found that heat stress increased the degree of unsaturation, UFA/SFA, and double bond index (DBI) in “TF71.” Moreover, quantitative RT-PCR revealed that heat stress altered the expression of the genes involved in fatty acid synthesis, including ACAC, FabD, FabF, FabH, FabI, and FatA. According to these findings, we can speculate that increasing the unsaturation degree of fatty acid or controlling the equilibrium ratio of UFA/SFA might be closely associated with the improving of the heat resistance in tall fescue

    The Fungus Aspergillus aculeatus Enhances Salt-Stress Tolerance, Metabolite Accumulation, and Improves Forage Quality in Perennial Ryegrass

    Get PDF
    Perennial ryegrass (Lolium perenne) is an important forage grass with high yield and superior quality in temperate regions which is widely used in parks, sport field, and other places. However, perennial ryegrass is moderately tolerant to salinity stress compared to other commercial cultivars and salt stress reduces their growth and productivity. Aspergillus aculeatus has been documented to participate in alleviating damage induced by salinity. Therefore, the objective of this study was to investigate the mechanisms underlying A. aculeatus-mediated salt tolerance, and forage quality of perennial ryegrass exposed to 0, 200, and 400 mM NaCl concentrations. Physiological markers and forage quality of perennial ryegrass to salt stress were evaluated based on the growth rate, photosynthesis, antioxidant enzymes activity, lipid peroxidation, ionic homeostasis, the nutritional value of forage, and metabolites. Plants inoculated with A. aculeatus exhibited higher relative growth rate (RGR), turf and forage quality under salt stress than un-inoculated plants. Moreover, in inoculated plants, the fungus remarkably improved plant photosynthetic efficiency, reduced the antioxidant enzymes activity (POD and CAT), and attenuated lipid peroxidation (decreased H2O2 and MDA accumulation) induced by salinity, compared to un-inoculated plants. Furthermore, the fungus also acts as an important role in maintaining the lower Na/K ratio and metabolites and lower the amino acids (Alanine, Proline, GABA, and Asparagine), and soluble sugars (Glucose and Fructose) for inoculated plants than un-inoculated ones. Our results suggest that A. aculeatus may be involved in modulating perennial ryegrass tolerance to salinity in various ways

    Diversity analysis of agronomic and nutritional traits of hybrid offspring of forage bermudagrass

    Get PDF
    Because of its excellent stress resistance and forage quality, the forage bermudagrass hybrid population had attracted the attention of scientific researchers in recent years. Studying its diversity could promote the breeding of desirable varieties. The variability in agronomic traits including fresh weight, dry weight, ash content, crude protein content, crude fat, phosphorus content, and relative feed value for 56 bermudagrass was investigated using Wrangler as an experimental reference. Grey correlation analysis and cluster analysis were employed to screen bermudagrass with high yield and superior quality. WCF-34 had the highest 2-year fresh weight (109,773.3 kg/ha), WCF-37 had the highest 2-year dry weight (31,951.6 kg/ha), WCF-24 had the lowest Ash content (7.46%), WCF-26 had the highest crude protein content (16.27%), WCF-27 had the highest curde fat content (3.58%), WCF-13 had the highest P content (0.45%), and WCF-42 had the highest relative feed value (95.32). Combining the results of grey relational analysis and cluster analysis, WCF-42, WCF-34, WCF-38, WCF-37, and WCF-40 were selected as high-quality bermudagrass. Through comprehensive analysis of the agronomic characters of bermudagrass, five bermudagrass were selected, the outcomes of this study would provide a theoretical basis for the breeding and genetic enhancement of bermudagrass

    Cadmium Tolerance of Perennial Ryegrass Induced by Aspergillus aculeatus

    Get PDF
    Cadmium (Cd) pollution is becoming increasingly prevalent, posing a global environmental hazard due to its negative effects on plants growth and human health. Phytoremediation is a green technology that involves uptake of Cd from the soil by a combination of plants and associated microbes. The objective of this study was to investigate the role of Aspergillus aculeatus in perennial ryegrass Cd tolerance. This fungus produced indole-3-acetic acid, siderophores, and 1-aminocyclopropane-1-carboxylate deaminase. Physiological traits including growth rate, turf quality and chlorophyll content were measured to evaluate the physiological responses of perennial ryegrass to Cd stress. These physiological traits were improved after inoculated with A. aculeatus. Inoculation of A. aculeatus actively reduced DTPA-Cd concentration in the soil and Cd translocation to plant shoots. Chlorophyll a fluorescence transient and the C/N ratio in shoots were elevated by A. aculeatus, which implied that the fungus could protect the photosystem II against Cd stress and increase the photosynthetic efficiency. These results suggested that A. aculeatus is beneficial in improving Cd tolerance of perennial ryegrass and reducing Cd-induced injuries, thus, it has promising potential for application of phytostabilization in Cd contaminated soil

    Comprehensive analysis of grazing intensity impacts alpine grasslands across the Qinghai-Tibetan Plateau: A meta-analysis

    Get PDF
    Livestock grazing is a dominant practice in alpine grasslands and plays a crucial role in the ecosystem service of the Qinghai-Tibetan Plateau. The effects of grazing on alpine grasslands highly depends on grazing intensity. Up to now, we still lack comprehensive understanding of the general responses of alpine grasslands to different grazing intensities over broad geographic scales across the Qinghai-Tibetan Plateau. Here, we conducted a meta-analysis to explore the responses of plant characteristics and soil properties to grazing intensity in alpine grasslands of the Qinghai-Tibetan Plateau based on 52 peer-reviewed literatures. The results showed that grazing did not change the belowground biomass, while significantly increased the ratio of root to shoot (P&lt; 0.05). Light grazing exhibited no significant effects on the plant richness, Shannon-Wiener diversity, soil water content, soil bulk density, nutrients, microbial biomass carbon, and microbial biomass nitrogen (P &gt; 0.05). Moderate grazing significantly increased the plant richness and Shannon-Wiener diversity, while significantly decreased the soil organic carbon and total nitrogen (P&lt; 0.05). Heavy grazing significantly decreased the plant richness, Shannon-Wiener diversity, water content, soil organic carbon, total nitrogen, microbial biomass carbon, and microbial biomass nitrogen, and significantly increased the soil bulk density (P&lt; 0.05). These findings suggest that overgrazing is closely associated with grassland degradation, and moderate grazing is a sustainable practice to provide animal production and simultaneously maintain ecological functions for alpine grasslands on the Qinghai-Tibetan Plateau

    Dynamics of Gut Microbiome in Giant Panda Cubs Reveal Transitional Microbes and Pathways in Early Life

    Get PDF
    Adult giant pandas (Ailuropoda melanoleuca) express transitional characteristics in that they consume bamboos, despite their carnivore-like digestive tracts. Their genome contains no cellulolytic enzymes; therefore, understanding the development of the giant panda gut microbiome, especially in early life, is important for decoding the rules underlying gut microbial formation, inheritance and dietary transitions. With deep metagenomic sequencing, we investigated the gut microbiomes of two newborn giant panda brothers and their parents living in Macao, China, from 2016 to 2017. Both giant panda cubs exhibited progressive increases in gut microbial richness during growth, particularly from the 6th month after birth. Enterobacteriaceae dominated the gut microbial compositions in both adult giant pandas and cubs. A total of 583 co-abundance genes (CAGs) and about 79 metagenomic species (MGS) from bacteria or viruses displayed significant changes with age. Seven genera (Shewanella, Oblitimonas, Helicobacter, Haemophilus, Aeromonas, Listeria, and Fusobacterium) showed great importance with respect to gut microbial structural determination in the nursing stage of giant panda cubs. Furthermore, 10 orthologous gene functions and 44 pathways showed significant changes with age. Of the significant pathways, 16 from Escherichia, Klebsiella, Propionibacterium, Lactobacillus, and Lactococcus displayed marked differences between parents and their cubs at birth, while 29 pathways from Escherichia, Campylobacter and Lactobacillus exhibited significant increase in cubs from 6 to 9 months of age. In addition, oxidoreductases, transferases, and hydrolases dominated the significantly changed gut microbial enzymes during the growth of giant panda cubs, while few of them were involved in cellulose degradation. The findings indicated diet-stimulated gut microbiome transitions and the important role of Enterobacteriaceae in the guts of giant panda in early life

    The Alleviation of Heat Damage to Photosystem II and Enzymatic Antioxidants by Exogenous Spermidine in Tall Fescue

    No full text
    Tall fescue (Festuca arundinacea Schreb) is a typical cool-season grass that is widely used in turf and pasture. However, high temperature as an abiotic stress seriously affects its utilization. The objective of this study was to explore the effect of spermidine (Spd) on heat stress response of tall fescue. The samples were exposed to 22°C (normal condition) or 44°C (heat stress) for 4 h. The results showed that exogenous Spd partially improved the quality of tall fescue leaves under normal temperature conditions. Nevertheless, after heat stress treatment, exogenous Spd significantly decreased the electrolyte leakage of tall fescue leaves. Spd also profoundly reduced the H2O2 and O2⋅- content and increased antioxidant enzymes activities. In addition, PAs can also regulate antioxidant enzymes activities including SOD, POD, and APX which could help to scavenge ROS. Moreover, application of Spd could also remarkably increase the chlorophyll content and had a positive effect on the chlorophyll α fluorescence transients under high temperature. The Spd reagent enhanced the performance of photosystem II (PSII) as observed by the JIP-test. Under heat stress, the Spd profoundly improved the partial potentials at the steps of energy bifurcations (PIABS and PItotal) and the quantum yields and efficiencies (φP0, δR0, φR0, and γRC). Exogenous Spd could also reduce the specific energy fluxes per QA- reducing PSII reaction center (RC) (TP0/RC and ET0/RC). Additionally, exogenous Spd improved the expression level of psbA and psbB, which encoded the proteins of PSII core reaction center complex. We infer that PAs can stabilize the structure of nucleic acids and protect RNA from the degradation of ribonuclease. In brief, our study indicates that exogenous Spd enhances the heat tolerance of tall fescue by maintaining cell membrane stability, increasing antioxidant enzymes activities, improving PSII, and relevant gene expression
    corecore