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Livestock grazing is a dominant practice in alpine grasslands and plays a crucial role

in the ecosystem service of the Qinghai-Tibetan Plateau. The effects of grazing on

alpine grasslands highly depends on grazing intensity. Up to now, we still lack

comprehensive understanding of the general responses of alpine grasslands to

different grazing intensities over broad geographic scales across the Qinghai-

Tibetan Plateau. Here, we conducted a meta-analysis to explore the responses of

plant characteristics and soil properties to grazing intensity in alpine grasslands of

the Qinghai-Tibetan Plateau based on 52 peer-reviewed literatures. The results

showed that grazing did not change the belowground biomass, while significantly

increased the ratio of root to shoot (P< 0.05). Light grazing exhibited no significant

effects on the plant richness, Shannon-Wiener diversity, soil water content, soil

bulk density, nutrients, microbial biomass carbon, and microbial biomass nitrogen

(P > 0.05). Moderate grazing significantly increased the plant richness and

Shannon-Wiener diversity, while significantly decreased the soil organic carbon

and total nitrogen (P< 0.05). Heavy grazing significantly decreased the plant

richness, Shannon-Wiener diversity, water content, soil organic carbon, total

nitrogen, microbial biomass carbon, and microbial biomass nitrogen, and

significantly increased the soil bulk density (P< 0.05). These findings suggest that

overgrazing is closely associated with grassland degradation, and moderate

grazing is a sustainable practice to provide animal production and

simultaneously maintain ecological functions for alpine grasslands on the

Qinghai-Tibetan Plateau.

KEYWORDS

grazing intensity, ecosystem function, alpine grassland, Qinghai-Tibetan Plateau,
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1 Introduction

Grassland ecosystems are of multi-functionality which plays

critical roles in supporting and regulating ecological processes

including carbon sequestration, hydrological functions, and

providing habitat for plants and animals (Eldridge and Delgado-

Baquerizo, 2017; Yan et al., 2020). Herbivore grazing is a primary

practice of the grasslands affecting multiple plant characteristics and

soil properties of grasslands (Zhou et al., 2017; Sun et al., 2020; Liu

et al., 2021). Due to the rapid economic development, there have been

increasing demands on grasslands during recent decades (Kemp et al.,

2013; Fetzel et al., 2017). The Qinghai-Tibetan Plateau whose main

ecosystem is alpine grassland (Piao et al., 2012) occupies 2.5 × 108

km2 and has a mean altitude of over 4000 m (Sun and Qin, 2016). The

alpine ecosystem is fragile and extremely sensitive to grazing

disturbance (Sun and Wang, 2016; Zhang Z. C. et al., 2021).

Recently, alpine grasslands across the Qinghai-Tibetan Plateau have

been suffering from grievous degradation as a result of the escalating

impact from overgrazing (Cui and Graf, 2009; Zhao et al., 2016),

seriously threatening the local ecological security and sustainable

development. Therefore, there has been increasing attention paid to

sustainable management of alpine grassland (Zhan et al., 2020; Sun

et al., 2021a).

Large herbivores can exert profound effects on alpine grasslands

by directly selective consumption and trampling (Sun et al., 2018;

Zhong et al., 2022) as well as indirectly changing resource availability

(Farji-Brener and Werenkraut, 2017; Zhong et al., 2021). On one

hand, grazing reduces aboveground biomass by direct removal of

phytomass which simultaneously increases ground-level light

availability for shorter species (Borer et al., 2014; Ameztegui and

Coll, 2015). Thus, grazing has been proven to promote plant diversity

(Bai et al., 2004; Zhan et al., 2020). On the other hand, large

herbivores generally reduced the organic matter input by directly

removing of plant biomass (Lin et al., 2011; Deng et al., 2014). Due to

less aboveground photosynthate allocation to root, grazing may

possibly reduce belowground biomass (Bai et al., 2015). Moreover,

the grazing-induced soil compaction by trampling limits root

penetration and development (Sanjari et al., 2008). Meanwhile, the

selective consumption of livestock increases the proportion of forbs

with lower decomposability and thereby constrains the soil nutrient

accumulation (Semmartin et al., 2010; Li et al., 2014; Zhang R. Y.

et al., 2021). These likely reduce soil organic matter input and further

decrease soil nutrient availability. However, previous studies found

that grazing might actually increase plant biomass resulted from the

grazing-induced compensatory effects (Bai et al., 2004; Niu et al.,

2009). Moreover, grazing can lead to a biomass transfer from

aboveground to belowground and thus benefit organic matter

returned to the soil (De Deyn et al., 2008; Sun et al., 2021b).

Additionally, the excretion input of large herbivores not only

improves soil nutrient availability (Deng et al., 2014), but also

promote soil microbial activities (McNaughton et al., 1997). Yet,

the trampling of large herbivores enhances topsoil compaction,

decreases porosity, and thus worsens water and aeration status of

the soil, which inhibits soil microbial activities and causes decreases in

soil quality and fertility (Holst et al., 2008; Chen et al., 2011).

It is well known that the various effects of grazing on alpine

grasslands greatly depend on the grazing intensity (Steffens et al.,
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2010; Yang et al., 2016), whose roles may be varied considerably in

alpine grasslands of the Qinghai-Tibetan Plateau compared with other

rangeland ecosystems (Yang et al., 2021; Zhang et al., 2022).

Comprehensive understanding of effects of grazing intensity on

alpine grasslands is valuable to determine the optimal intensity for

sustainable grazing in order to support alpine grassland management.

Although the effects on grazing intensity on alpine grasslands have been

widely reported in multiple studies, most of them are small-scale field

studies (Yang et al., 2016; Deng et al., 2017; Zhan et al., 2020; Liu et al.,

2021; Sun et al., 2021b). We still lack knowledge about the responses of

alpine grasslands to different grazing intensities at a large scale across

the Qinghai-Tibetan Plateau. This limits our ability to gain a better

understanding of maintaining services of grazing ecosystems much less

guiding sustainable management for the alpine grasslands. Here, we

selected 52 peer-reviewed literatures to conduct a synthesis on

responses of plant characteristics and soil properties to grazing

intensity in alpine grasslands of the Qinghai-Tibetan Plateau. Our

main objectives were to identify the potential effects of grazing intensity

on alpine grasslands on the Qinghai-Tibetan Plateau. The findings

will help guide sustainable grassland management for alpine

rangeland ecosystems.
2 Materials and methods

2.1 Data collection

To construct a comprehensive database of grazing intensity effects

on alpine grasslands, we collected peer-reviewed publications before

July 2022 using the Web of Science (http://apps.webofknowledge.

com/) and the China Knowledge Resource Integrated Database

(http://www.cnki.net/). The searching term combinations were:

“grazing or herbivory or fencing”, “alpine grassland or alpine steppe

or alpine meadow”, and “Qinghai-Tibetan Plateau or Tibetan Plateau

or Tibet”. Afterward, we screened the publications to identify

appropriate studies based on the following criteria: (1) Only field

experiments conducted in the alpine grassland of the Qinghai-Tibetan

Plateau were included; (2) Grazing impacts were focused on alone

without other confounding treatments (e.g. warming, precipitation

change, or fertilization); (3) We also excluded simulated grazing

experiments (e.g. mowing or trampling studies); (4) there was at

least one pair of non-grazing (control group) and grazing (treatment

group) treatments whose initial environmental and climate

conditions, vegetation and soil types were the same; (5) Grazing

intensity needs to be clearly described in each study; (6) Response

variables were explicitly indicated by their means, standard deviation

or standard error, and number of replicates. Totally, there were 52

published journal articles accorded with these criteria shown in the

Supplementary, which included 38 alpine grassland sites across the

Qinghai-Tibetan Plateau (Figure 1).

In the dataset, we collected 16 response variables of alpine

grasslands which were divided into the following several categories:

plant characteristics (plant coverage, aboveground biomass,

belowground biomass, root: shoot, species richness, Shannon-

Wiener index), soil physical properties (soil water content and soil

bulk density), soil nutrients (soil organic carbon, total nitrogen, total

phosphorus, available nitrogen, available phosphorus, ratio of carbon
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to nitrogen), and soil microbiomes (microbial biomass carbon and

microbial biomass nitrogen). These response variables were all

extracted directly from the body of the text, tables, or acquired

from digitized graphs by using GetData Graph Digitizer software

(ver. 2.25, www.getadata-graph-digitizer.com/). Additionally, the

geographic coordinates (latitude and longitude) of each study were

also recorded. According to Sun et al. (2021b), the grazing intensity

was divided into light, moderate, and heavy grazing intensities

considering utilization of grass, number of livestock, or distance

from the source of water, as shown in Table S1 in the Supplementary.
2.2 Data analyses

The meta-analysis was conducted by using the MetaWin 2.1

software (Sinauer Associates Inc., Sunderland, MA, USA) to

determine whether different grazing intensities had significant

effects on above- and belowground functions of alpine grasslands

(Hedges et al., 1999). For all response variables, we calculated an effect

size for the contrasts between no grazing with three grazing intensities

(light, moderate and heavy). The effect size was estimated as the

response ratio (RR) which was calculated as follows:

RR = ln (Xt=Xc)

Where xt and xc are the arithmetic mean concentrations of the target

variable in alpine grasslands with different grazing intensities (treatment

group) and no grazing grasslands (control group), respectively.

The variance (v) of RR was estimated by the following equation:

v =
S2t

ntX
2
t

+
S2c

ncX
2
c

where nt and St are the sample sizes and the standard deviations of

the target variable in the treatment group, respectively; nc and Sc are
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the sample sizes and the standard deviations of the target variable the

control group, respectively.

Then, the reciprocal of the variance (1/v) was used as the weight

factor (w) for each RR value, which was further used to calculate the

weighted response ratio (RR++) to improve the statistical accuracy.

The mean response ratio (RR++) was calculated from individual RR

values of each pairwise comparison between the no grazing and

grazing group as follows:

RR++ = o
m
i=1ok

j=1wijRRij

om
i=1ok

j=1wij

where m and k are the number of treatment groups and the

number of comparisons in the corresponding control group,

respectively. wij and RRij are the weight factor and response ratio

for each categorical group, respectively.

The 95% confidence interval (CI) values of RR++ were used to test

the significance of grazing effect and were calculated as follows:

95%CI = RR++ ± 1:96S(RR++)

where S(RR++) is the standard error of RR++ which was

estimated by the following equation:

S(RR++) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

om
i=1ok

j=1wij

s

We applied the random-effects model to calculate the mean effect

size for each study and derived the bootstrap 95% confidence interval

(95% CI) for each categorical group via the bootstrapping method

based on 5,000 iterations (Guo and Gifford, 2002; Janssens et al.,

2010). It suggests a statistically significant response of the selected

variables only if the 95% CI of the RR++ did not overlap with zero.
FIGURE 1

Distribution of alpine grassland sites across the Qinghai-Tibetan Plateau of the collected datasets in this study.
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3 Results

3.1 Responses of plant characteristics to
different grazing intensities

Grazing significantly decreased the plant coverage and

aboveground biomass compared with those of no grazing (P< 0.05;

Figures 2A, B). Furthermore, the magnitude of reductions of both

plant coverage and aboveground biomass gradually increased with

increasing grazing intensity. Specifically, the mean weighted response

ratios of plant coverage were -0.12, -0.18, and -0.26 for LG, MG, and

HG, respectively; the mean weighted response ratios of aboveground

biomass were -0.34, -0.45, and -0.73 for LG, MG, and HG,

respectively. By contrast, grazing showed no significant effect on

belowground biomass with all grazing intensities (P > 0.05;

Figure 2C). Moreover, grazing significantly increased the root:

shoot with the mean weighted response ratios of 0.27, 0.22, and

0.34 for LG, MG, and HG, respectively (Figure 2D). Additionally,

both species richness and Shannon-Wiener index exhibited no

significant changes with LG, while significantly increased with MG

(RR++ = 0.18 and 0.16, respectively) and significantly decreased with

HG (RR++ = -0.26 and -0.15, respectively; Figures 2E, F).
3.2 Responses of soil properties to different
grazing intensities

We found that the soil water content (Figure 3A), soil bulk

density (Figure 3B), soil total phosphorus (Figure 4C), available

nitrogen (Figure 4D), available phosphorus (Figure 4E), microbial

biomass carbon (Figure 5A) and microbial biomass nitrogen

(Figure 5B) unchanged with MG (P > 0.05), which significantly

decreased the soil organic carbon (RR++ = -0.17; Figure 4A), total
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nitrogen (RR++ = -0.16; Figure 4B), and ratio of carbon to nitrogen

(RR++ = -0.13; Figure 4F). Across all the observations compiled in

this study, our meta analysis showed that LG had no significant

effects on all the above soil properties (P > 0.05; Figures 3-5).

Similarly, HG did not significantly affect soil total phosphorus,

available nitrogen, and available phosphorus (P > 0.05), while HG

remarkably decreased soil water content (RR++ = -0.42), soil organic

carbon (RR++ = -0.37), total nitrogen (RR++ = -0.27), ratio of carbon

to nitrogen (RR++ = -0.24), microbial biomass carbon (RR++ = -0.52)

and microbial biomass nitrogen (RR++ = -1.01) and significantly

increase the soil bulk density (RR++ = 0.11) (Figures 3-5).
4 Discussion

4.1 Effects of grazing intensity on
plant characteristics

Plant productivity serves as important metrics of ecosystem

functions for grazing grasslands. In the current study, we found

significant decreases in the plant aboveground biomass whose

magnitudes gradually increased with increasing grazing intensity

(Figure 2). It is due, for the most part, to the direct consumption

and damage of plant tissue from large herbivores, and the extent of

disturbance increases with grazing pressure (Lin et al., 2011; Deng

et al., 2014). Previous studies revealed that the grazing-induced

decrease in aboveground biomass could limit plant to make

photosynthate which further inhibits root growth (Bagchi and

Ritchie, 2010; Bai et al., 2015). However, the belowground biomass

exhibited no significant change with all grazing intensities in this

study (Figure 2). It might be that grazing induced plant compensatory

effects which offset the negative effects on root growth (Bai et al., 2004;

Niu et al., 2009). Consequently, the ratios of root to shoot were
A B

D E F

C

FIGURE 2

Weighted response ratios (RR++) and their 95% confidence intervals (CI) for plant characteristics including plant coverage (A), aboveground biomass (B),
belowground biomass (C), root: shoot (D), species richness (E), and Shannon-Wiener index (F) in the lightly (LD), moderately (MD), and heavily (HG)
grazing alpine grasslands. The overall effect sizes are unitless grand means from weighted meta-analyses. The dots with error bars indicate the mean
effect size with the 95% CI. The observed effect sizes were considered statistically significant if the 95% CI did not include zero.
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remarkably increased with all grazing intensities (Figure 2), which

indicates that grazing leads to the biomass transfer from aboveground

to belowground in alpine grasslands, in consistent with previous

studies (De Deyn et al., 2008; Deng et al., 2014; Sun et al., 2021b).

Plant diversity is vital for maintaining grassland ecosystem

function and stability (Chen et al., 2018; Pennekamp et al., 2018).

Numerus studies have proven that the abundant plant aboveground

biomass can exacerbate competition effects among young plant

species and further result in loss of plant species in no grazing

grasslands (Klein et al., 2004; Ruprecht et al., 2010; Zhang Z. C.

et al., 2021). By contrast, the removal of plant aboveground biomass

by herbivores contributes to apparent decreases in plant coverage

(Figure 2) and thereby increases the reception of solar radiation by

green plants and soil surface in the grazed pastures, which can

increase soil temperature and promote germination rates and
Frontiers in Plant Science 05
seedling survival (Wu et al., 2009; Tian et al., 2020). Therefore, we

found moderate grazing intensity contributed to higher level of plant

diversity in this study (Figure 2), which supports the intermediate

disturbance hypothesis (McNaughton et al., 1997). However, once the

disturbance exceeds a certain extent, heavy grazing intensity would

show significantly negative effects on plant diversity (Figure 2), which

was also revealed in numerus previous studies (Harris, 2010; Eldridge

and Delgado-Baquerizo, 2017; Li et al., 2021).
4.2 Effects of grazing intensity on
soil properties

The grazing-induced lower plant cover can not only increase the

light availability at ground level, but also enhances soil evaporation
A B

FIGURE 3

Weighted response ratios (RR++) and their 95% confidence intervals (CI) for soil physical properties including soil water content (A) and soil bulk density
(B) in the lightly (LD), moderately (MD), and heavily (HG) grazing alpine grasslands. The overall effect sizes are unitless grand means from weighted meta-
analyses. The dots with error bars indicate the mean effect size with the 95% CI. The observed effect sizes were considered statistically significant if the
95% CI did not include zero.
A B

D E F

C

FIGURE 4

Weighted response ratios (RR++) and their 95% confidence intervals (CI) for soil nutrients including soil organic carbon (A), total nitrogen (B), total
phosphorus (C), available nitrogen (D), available phosphorus (E), and ratio of carbon to nitrogen (F) in the lightly (LD), moderately (MD), and heavily (HG)
grazing alpine grasslands. The overall effect sizes are unitless grand means from weighted meta-analyses. The dots with error bars indicate the mean
effect size with the 95% CI. The observed effect sizes were considered statistically significant if the 95% CI did not include zero.
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due to exposing more soil into the air (Chen et al., 2011; Tian et al.,

2016). As a result, we found that heavy grazing significantly decreased

soil water content (Figure 3). Since soil water plays vital roles in the

retention and transfer of available nutrients and multiple plant

physiological activities (Liu et al., 2020; Zhou et al., 2020; Zhang

et al., 2022), the intensified water limitation by heavy grazing will

further suppress plant growth (Chen et al., 2011; Bagchi et al., 2017).

Moreover, the soil bulk density was significantly increased by heavy

grazing due to the trampling of large herbivores (Figure 3). The

enhanced soil compaction can worsen the soil water and aeration

conditions, which would further supress soil microbial activities

(Holst et al., 2008; Chen et al., 2011). This explains the significant

decreases in soil microbial biomass carbon and microbial biomass

nitrogen with heavy grazing in this study (Figure 5).

For soil fertility, we found that both moderate and heavy

grazing significantly decreased the soil carbon and nitrogen

(Figure 4). It is mainly because of the suppressed organic matter

accumulation and decomposition processes due to an outflow of

nutrient from grassland to livestock as well as the suppressed

soil microbial activities (Zhou et al., 2017; Liu et al., 2021; Wan

et al., 2022). Moreover, the proportion of forbs with lower

decomposability is generally improved due to the selective

consumption of livestock, which can constrain the soil nutrient

accumulation (Semmartin et al., 2010; Li et al., 2014; Zhang R. Y.

et al., 2021). Previous studies found that the deposition of dung and

urine from herbivores can improve soil nutrient availability

(Kohler et al., 2005; Tian et al., 2021). However, the soil available

nutrients unchanged with all grazing intensities in this study

(Figure 4). The reason might be that the negative effects of

decreased organic matter accumulation and decomposition offset

the positive effects of dung and urine deposition. Also, the soil

phosphorus unchanged with all grazing intensities in alpine

grasslands (Figure 4). The logic might be that the soil

phosphorus is mainly derived from rock weathering so as to be

more responsive to parent materials and climate instead of grazing

disturbance (Liu et al., 2021; Zhang Z. C. et al., 2021).
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5 Conclusion

Our study reveals the impacts of different grazing intensities on

plant characteristics and soil properties of alpine grasslands across the

Qinghai-Tibetan Plateau. Specifically, we found that light grazing

exhibited little effects on most plant characteristics and soil properties

due to its light disturbance. Moderate grazing significantly improved

plant diversity, while decreased soil nutrients due to an outflow of

nutrient from grassland to livestock. Heavy grazing intensity not only

weakens plant productivity and diversity, but also causes decreases in

soil quality and fertility. These findings imply that overgrazing is closely

related to alpine grassland degradation, while moderate grazing may be

a sustainable practice to provide animal production and simultaneously

maintain ecological functions for alpine grasslands. However,

fertilization should be needed to keep soil fertility and grassland

productivity for the moderate grazing ecosystems on the Qinghai-

Tibetan Plateau. However, the effects of grazing intensity may vary with

grassland types, grazing duration, and grazing management. Further

studies to combine these factors are necessary for scientific assessments

of effects of grazing on the alpine grasslands.
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