79 research outputs found

    Local axisymmetry-breaking–induced transition of trapped-particle orbit and loss channels in quasi-axisymmetric stellarators

    Get PDF
    The transition of trapped-particle orbit topologies has been investigated in quasi-axisymmetric (QA) configurations, such as the Chinese First Quasi-axisymmetric Stellarator (CFQS). It is found that the axisymmetry-breaking phenomenon in QA configurations is of great significance at some specific locations, which could easily induce blocked particles to transit into localized particles. A novel aspect is presented to interpret the transition mechanism of trapped-particle orbit topologies in this paper, i.e., as the amplitudes of non-axisymmetric field increase along the radius direction, the region of large toroidal inhomogeneity is gradually generated, which makes the length of the trapped-particle trajectory substantially short, and hence, may restrict particles to a single helical field period. Meanwhile, at such locations the "pseudo-axisymmetric" field results in coupling of the maximum radial drift and the minimum poloidal drift, which enables the transition of trapped-particle orbit topologies considerably and forms specific loss channels, degrading plasma confinement. These results may shed light on the optimization of QA configurations via avoidance of such coupling with respect to energetic particle confinement. Moreover, this work is also relevant to the generation of inhomogeneity of particle flux deposition on the devertor plates

    To Avoid the Pitfall of Missing Labels in Feature Selection: A Generative Model Gives the Answer

    No full text
    In multi-label learning, instances have a large number of noisy and irrelevant features, and each instance is associated with a set of class labels wherein label information is generally incomplete. These missing labels possess two sides like a coin; people cannot predict whether their provided information for feature selection is favorable (relevant) or not (irrelevant) during tossing. Existing approaches either superficially consider the missing labels as negative or indiscreetly impute them with some predicted values, which may either overestimate unobserved labels or introduce new noises in selecting discriminative features. To avoid the pitfall of missing labels, a novel unified framework of selecting discriminative features and modeling incomplete label matrix is proposed from a generative point of view in this paper. Concretely, we relax Smoothness Assumption to infer the label observability, which can reveal the positions of unobserved labels, and employ the spike-and-slab prior to perform feature selection by excluding unobserved labels. Using a data-augmentation strategy leads to full local conjugacy in our model, facilitating simple and efficient Expectation Maximization (EM) algorithm for inference. Quantitative and qualitative experimental results demonstrate the superiority of the proposed approach under various evaluation metrics

    Local-Nearest-Neighbors-Based Feature Weighting for Gene Selection

    No full text

    The Relationship between Insect Resistance and Tree Age of Transgenic Triploid Populus tomentosa Plants

    No full text
    To explore the stability of insect resistance during the development of transgenic insect-resistant trees, this study investigated how insect resistance changes as transgenic trees age. We selected 19 transgenic insect-resistant triploid Populus tomentosa lines as plant material. The presence of exogenous genes and Cry1Ac protein expression were verified using polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) analyses. The toxicity for Clostera anachoreta and Lymantria dispar was evaluated by feeding fresh leaves to first instar larvae after the trees were planted in the field for 2 years and after the sixth year. Results of PCR showed that the exogenous genes had a long-term presence in the poplar genome. ELISA analyses showed significant differences existed on the 6-year-old transgenic lines. The insect-feeding experiment demonstrated significant differences in the mortality rates of C. anachoreta and L. dispar among different transgenic lines. The average corrected mortality rates of C. anachoreta and L. dispar ranged from 5.6–98.7% to 35.4–7.2% respectively. The larval mortality rates differed significantly between the lines at different ages. Up to 52.6% of 1-year-old transgenic lines and 42.1% of 2-year-old transgenic lines caused C. anachoreta larval mortality rates to exceed 80%, whereas only 26.3% of the 6-year-old transgenic lines. The mortality rates of L. dispar exhibited the same trend: 89.5% of 1-year-old transgenic lines and 84.2% of 2-year-old transgenic lines caused L. dispar larval mortality rates to exceed 80%; this number decreased to 63.2% for the 6-year-old plants. The proportion of 6-year-old trees with over 80% larval mortality rates was clearly lower than that of the younger trees. The death distribution of C. anachoreta in different developmental stages also showed the larvae that fed on the leaves of 1-year-old trees were killed mostly during L1 and L2 stages, whereas the proportion of larvae that died in L3 and L4 stages was significantly increased when fed on leaves of 6-year-old trees. Results of correlation analysis showed there was a significant correlation between the larvae mortality rates of trees at different ages, as well as between Cry1Ac protein contents and larvae mortality rates of 6-year-old trees

    A resonance Rayleigh scattering sensor for sensitive differentiation of telomere DNA length and monitoring special motifs (G-quadruplex and i-motif) based on the Ag nanoclusters and NAND logic gate responding to chemical input signals

    No full text
    Abstract Background Differentiation of telomere length is of vital importance because telomere length is closely related with several deadly diseases such as cancer. Additionally, G-quadruplex and i-motif formation in telomeric DNA have been shown to act as a negative regulator of telomere elongation by telomerase in vivo and are considered as an attractive drug target for cancer chemotherapy. Results In this assay, Ag nanoclusters templated by hyperbranched polyethyleneimine (PEI–Ag NCs) are designed as a new novel resonance Rayleigh scattering (RRS) probe for sensitive differentiation of telomere length and monitoring special motifs (G-quadruplex and i-motif). In this assay, free PEI–Ag NC probe or DNA sequence alone emits low intensities of RRS, while the formation of PEI–Ag NCs/DNA complexes yields greatly enhanced RRS signals; however, when PEI–Ag NCs react with G-quadruplex or i-motif, the intensities of RRS exhibit slight changes. At the same concentration, the enhancement of RRS signal is directly proportional to the length of telomere, and the sensitivity of 64 bases is the highest with the linear range of 0.3–50 nM (limit of detection 0.12 nM). On the other hand, due to the conversion of telomere DNA molecules among multiple surrounding conditions, a DNA logic gate is developed on the basis of two chemical input signals (K+ and H+) and a change in RRS intensity as the output signal. Conclusion Our results indicate that PEI–Ag NCs can serve as a novel RRS probe to identify DNA length and monitor G-quadruplex/i-motif through the different increasing degrees of RRS intensity. Meanwhile, the novel attributes of the nanoprobe stand superior to those involving dyes or labeled DNA because of no chemical modification, low cost, green, and high efficiency

    Ratiometric Near-Infrared Fluorescent Probe for Synergistic Detection of Monoamine Oxidase B and Its Contribution to Oxidative Stress in Cell and Mice Aging Models

    No full text
    As new biomarkers, monoamine oxidases (MAOs) play important roles in maintaining the homeostasis of biogenic amines via catalyzing the oxidation of biogenic amines to corresponding aldehydes with the generation of reactive oxygen species (ROS). MAOs have two isoforms, MAO-A and MAO-B. MAO-A is considered to be a major factor of neuropsychiatric and depressive disorders. However, MAO-B is thought to be involved in several neurodegenerative diseases. Therefore, to explore their distinct roles in different diseases, the selective detection of MAOs is essential. Herein, two new types of near-infrared (NIR) fluorescent probes, MitoCy-NH2 and MitoHCy-NH2, are provided for synergistic imaging of MAO-B and its contribution to oxidative stress in cells and in mice aging models. These probes are composed of three moieties: heptamethine cyanine as fluorophore, propanamide as recognition group, and triphenylphosphonium cation as mitochondrial targeting group. The amine oxidation and beta-elimination reaction can lead to obvious fluorescence increase and color changes from green to blue. The probe MitoHCy-NH2 can be used to synergistically detect MAO-B and its contribution to oxidative stress in the replicative senescence model. And the probe MitoCy-NH2 can offer ratiometric near-infrared fluorescence for the selective detection of MAO-B in the H2O2-induced cell aging model and in mice aging models. The results reveal that there are different MAO-B levels in different ages of mice models. MitoCy-NH2 also can evaluate therapeutic effects of pargyline and selegiline in mice models. The desirable analytical behaviors of our probes make them useful chemical tools for the selective detection of MAO-B and its contribution to oxidative stress in biosystems

    Analysis of Laser Cell Response Characteristics under Different Irradiation Conditions

    No full text
    Although the application of laser wireless energy transmission technology in many fields such as UAV power supply is increasing, the laser incidence angle and beam shift remain the key factors limiting the efficiency of long-range laser wireless energy transmission. In this study, a laser cell response test platform was built to measure and analyze the response characteristics of a laser cell under different laser incidence angles and beam shifts. The results show that the increase in the incident angle intensifies the reflection on the irradiated surface, resulting in a linear decrease in the power density received by the laser cell, which eventually leads to a significant decrease in the output power, and the output power tends to be close to 0 when the incident angle exceeds 75°. The increase in the beam offset distance increases the reverse bias of the cell, which is the main reason for the significant decrease in the output power. The local irradiation also leads to an increase in the heat generation power; when the beam coverage is below 50%, the overall output power tends to be close to 0. This study provides a reference for improving the laser wireless energy transmission efficiency and laser cell optimization
    • …
    corecore