48 research outputs found

    Suggestions on the development strategy of shale gas in China

    Get PDF
    AbstractFrom the aspects of shale gas resource condition, main exploration and development progress, important breakthrough in key technologies and equipment, this paper systematically summarized and analyzed current situation of shale gas development in China and pointed out five big challenges such as misunderstandings, lower implementation degree and higher economic uncertainty of shale gas resource, and still no breakthrough in exploration and development core technologies and equipment for shale gas buried depth more than 3500 m, higher cost and other non-technical factors that restrict the development pace. Aiming at the above challenges, we put forward five suggestions to promote the shale gas development in China: (1) Make strategies and set goals according to our national conditions and exploration and development stages. That is, make sure to realize shale gas annual production of 20 × 109 m3, and strives to reach 30 × 109 m3. (2) Attach importance to the research of accumulation and enrichment geological theory and exploration & development key engineering technologies for lower production and lower pressure marine shale gas reservoir, and at the same time orderly promote the construction of non-marine shale gas exploration & development demonstration areas. (3) The government should introduce further policies and set special innovation funds to support the companies to carry out research and development of related technologies and equipment, especially to strengthen the research and development of technology, equipment and process for shale gas bellow 3500 m in order to achieve breakthrough in deep shale gas. (4) Continue to promote the geological theory, innovation in technology and management, and strengthen cost control on drilling, fracturing and the whole process in order to realize efficient, economic and scale development of China's shale gas. (5) Reform the mining rights management system, establish information platform of shale gas exploration and development data, and correctly guide the non-oil and gas companies to participate in shale gas exploration and development

    Action Real-Time Strategy Gaming Experience Related to Enhanced Capacity of Visual Working Memory

    Get PDF
    Action real-time strategy gaming (ARSG)—a major genre of action video gaming (AVG)—has both action and strategy elements. ARSG requires attention, visual working memory (VWM), sensorimotor skills, team cooperation, and strategy-making abilities, thus offering promising insights into the learning-induced plasticity. However, it is yet unknown whether the ARSG experience is related to the development of VWM capacity. Using both behavioral and event-related potential (ERP) measurements, this study tested whether ARSG experts had larger VWM capacity than non-experts in a change detection task. The behavioral results showed that ARSG experts had higher accuracy and larger VWM capacity than non-experts. In addition, the ERP results revealed that the difference wave of the contralateral delay activity (CDA) component (size 4–size 2) elicited by experts was significantly larger than that of non-experts, suggesting that the VWM capacity was higher in experts than in non-experts. Thus, the findings suggested that prolonged ARSG experience is correlative with the enhancement of VWM

    Photocatalytic Degradation of Organic Pollutants in Water Using Graphene Oxide Composite

    Get PDF
    Developing sustainable and less-expensive technique is always challenging task in water treatment process. This chapter explores the recent development of photocatalysis technique in organic pollutant removal from the water. Particularly, advantages of graphene oxide in promoting the catalytic performance of semiconductor, metal nanoparticle and polymer based photocatalyst materials. Owing to high internal surface area and rapid electron conducting property of graphene oxide fostering as backbone scaffold for effective hetero-photocatalyst loading, and rapid photo-charge separation enables effective degradation of pollutant. This chapter summaries the recent development of graphene oxide composite (metal oxide, metal nanoparticle, metal chalcogenides, and polymers) in semiconductor photocatalysis process towards environmental remediation application

    Research on the electromagnetic radiation characteristics of the gas main switch of a capacitive intense electron-beam accelerator

    No full text
    Strong electromagnetic fields are radiated during the operation of the intense electron-beam accelerator (IEBA), which may lead to the nearby electronic devices out of order. In this paper, the research on the electromagnetic radiation characteristic of the gas main switch of a capacitive IEBA is carried out by the methods of theory analysis and experiment investigation. It is obtained that the gas main switch is the dominating radiation resource. In the absence of electromagnetic shielding for the gas main switch, when the pulse forming line of the IEBA is charged to 700 kV, the radiation field with amplitude of 3280 V/m, dominant frequency of 84 MHz and high frequency 100 MHz is obtained at a distance of 10 meters away from the gas main switch. The experimental results of the radiation field agree with the theoretical calculations. We analyze the achievements of several research groups and find that there is a relationship between the rise time (T) of the transient current of the gas main switch and the dominant frequency (F) of the radiation field, namely, F*T=1. Contrast experiment is carried out with a metal shield cover for the gas main switch. Experimental results show that for the shielded setup the radiation field reduces to 115 V/m, the dominant frequency increases to 86.5 MHz at a distance of 10 away meters from the gas main switch. These conclusions are beneficial for further research on the electromagnetic radiation and protection of the IEBA

    A compact control system to achieve stable voltage and low jitter trigger for repetitive intense electron-beam accelerator based on resonant charging

    No full text
    A compact control system based on Delphi and Field Programmable Gate Array(FPGA) is developed for a repetitive intense electron-beam accelerator(IEBA), whose output power is 10GW and pulse duration is 160ns. The system uses both hardware and software solutions. It comprises a host computer, a communication module and a main control unit. A device independent applications programming interface, devised using Delphi, is installed on the host computer. Stability theory of voltage in repetitive mode is analyzed and a detailed overview of the hardware and software configuration is presented. High voltage experiment showed that the control system fulfilled the requests of remote operation and data-acquisition. The control system based on a time-sequence control method is used to keep constant of the voltage of the primary capacitor in every shot, which ensured the stable and reliable operation of the electron beam accelerator in the repetitive mode during the experiment. Compared with the former control system based on Labview and PIC micro-controller developed in our laboratory, the present one is more compact, and with higher precision in the time dimension. It is particularly useful for automatic control of IEBA in the high power microwave effects research experiments where pulse-to-pulse reproducibility is required

    Parameter study of transient carbon deposition effect on the performance of a planar solid oxide fuel cell

    No full text
    Carbon deposition has a serious effect on the performance of solid oxide fuel cells (SOFCs). An unsteady-state 2D model based on COMSOL software is used to study the carbon deposition process in a planar SOFC. The carbon deposition, catalyst activity, reaction rate and temperature fields are obtained to analyse the mechanism of carbon deposition in the SOFC at different operating time. The effects of the operating voltage, inlet H-2 molar fraction, operating pressure and operating temperature on the performance of the SOFC are investigated in detail. It is found that the biggest variation of the performances caused by carbon deposition occurs in the inlet domain of the anode support layer. The increase of operating voltage, inlet H-2 molar fraction, operating pressure and temperature accelerates the carbon deposition process. The predicted results could deepen our understanding of carbon deposition and its transient quantitative effects on the catalyst, structure and cell performance. (C) 2014 Elsevier Ltd. All rights reserved

    Dissipative Particle Dynamics Simulation of the Sensitive Anchoring Behavior of Smectic Liquid Crystals at Aqueous Phase

    No full text
    Rational design of thermotropic liquid crystal (LC)-based sensors utilizing different mesophases holds great promise to open up novel detection modalities for various chemical and biological applications. In this context, we present a dissipative particle dynamics study to explore the unique anchoring behavior of nematic and smectic LCs at amphiphile-laden aqueous-LC interface. By increasing the surface coverage of amphiphiles, two distinct anchoring sequences, a continuous planar-tilted-homeotropic transition and a discontinuous planar-to-homeotropic transition, can be observed for the nematic and smectic LCs, respectively. More importantly, the latter occurs at a much lower surface coverage of amphiphiles, demonstrating an outstanding sensitivity for the smectic-based sensors. The dynamics of reorientation further reveals that the formation of homeotropic smectic anchoring is mainly governed by the synchronous growth of smectic layers through the LCs, which is significantly different from the mechanism of interface-to-bulk ordering propagation in nematic anchoring. Furthermore, the smectic LCs have also been proven to possess a potential selectivity in response to a subtle change in the chain rigidity of amphiphiles. These simulation findings are promising and would be valuable for the development of novel smectic-based sensors

    High-Property Anode Catalyst Compositing Co-Based Perovskite and NiFe-Layered Double Hydroxide for Alkaline Seawater Splitting

    No full text
    The progress of high-efficiency non-precious metal anode catalysts for direct seawater splitting is of great importance. However, due to the slow oxygen evolution reaction (OER) kinetics, competition of chlorine evolution reaction (ClER), and corrosion of chloride ions on the anode, the direct seawater splitting faces many challenges. Herein, we develop a perovskite@NiFe layered double hydroxide composite for anode catalyst based on Ba0.5Sr0.5Co0.8Fe0.2O3 (BSCF) and NiFe layered double hydroxide (NiFe-LDH) heterostructure. The optimized BSCF@CeO2@NiFe exhibits excellent OER activity, with the potential at 100 mA cm−2 (Ej = 100) being 1.62 V in the alkaline natural seawater. Moreover, the electrolytic cell composed of BSCF@CeO2@NiFe anode shows an excellent stability, with negligible attenuation during the long-term overall seawater splitting with the remarkable self-recovery ability in the initial operation stage, and the direct seawater splitting potential increasing by about 30 mV at 10 mA cm−2. Our work can give a guidance for the design and preparation of anode catalysts for the direct seawater splitting
    corecore