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Action real-time strategy gaming (ARSG)—a major genre of action video gaming
(AVG)—has both action and strategy elements. ARSG requires attention, visual working
memory (VWM), sensorimotor skills, team cooperation, and strategy-making abilities,
thus offering promising insights into the learning-induced plasticity. However, it is yet
unknown whether the ARSG experience is related to the development of VWM capacity.
Using both behavioral and event-related potential (ERP) measurements, this study tested
whether ARSG experts had larger VWM capacity than non-experts in a change detection
task. The behavioral results showed that ARSG experts had higher accuracy and larger
VWM capacity than non-experts. In addition, the ERP results revealed that the difference
wave of the contralateral delay activity (CDA) component (size 4–size 2) elicited by
experts was significantly larger than that of non-experts, suggesting that the VWM
capacity was higher in experts than in non-experts. Thus, the findings suggested that
prolonged ARSG experience is correlative with the enhancement of VWM.

Keywords: action real-time strategy gaming, action video gaming, change detection task, contralateral delay
activity, visual working memory capacity

INTRODUCTION

Action video gaming (AVG), as a main type of video gaming, is becoming an important
entertainment medium worldwide. In an AVG session, players keep track of multiple complex
visual stimuli simultaneously and respond to the stimuli under stringent time pressure (Green
and Bavelier, 2003, 2012), which demands for various cognitive abilities, such as visual processing,
attention, working memory, multi-target-tracking skills, and inhibitory control (Green and
Bavelier, 2007, 2012; Spence and Feng, 2010). Bavelier and Green have proposed that AVG may
be a potential, new training tool that can be used to induce cognitive and brain plasticity (Gentile
and Gentile, 2008; Bavelier and Green, 2019) as AVG: (1) consistently keeps players in their zone
of proximal development through the appropriate selection of entry levels and gradual step-size
change in difficulty; (2) constantly exposes players to a perceptually rich and cognitively challenging
environment; and (3) motivates players to persist through challenging tasks using rewards and
punishments. Thus, research should examine the possibility of using AVG as a new, computerized
intervention approach to improve various aspects of cognition ability.
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Recently, action real-time strategy gaming (ARSG)—a
new genre of AVG that contains both action and strategy
components—has grown in popularity. In addition to requiring
sensorimotor skills [e.g., attention, visual working memory
(VWM), visuo-spatial cognition, hand–eye coordination], ARSG
also requires timely strategic decision-making and teamwork,
just like traditional team sports (e.g., soccer, basketball). Thus,
ARSG is a high-cognitive-load task, further offering promising
insights into learning-related cognitive and neural plasticity.
Using event-related potential (ERP) measurement, this study
explores the effect of ARSG experience on cognitive and neural
plasticity by determining whether ARSG experts have larger
VWM capacity than non-experts.

This study examined the development of VWM because it
is an important component of cognitive and brain plasticity. In
addition, VWM is a critical cognitive mechanism for successful
video gaming as it enables players to keep task-related visual
stimuli on a short delay after its presentation (Logie, 2011;
Blacker and Curby, 2013). Importantly, the VWM capacity
is limited in humans (Luck and Vogel, 1997, 2013; Cowan,
2001; Hao et al., 2018) and varies across individuals (Cowan
et al., 2005; Vogel et al., 2005; Cusack et al., 2009; Astle and
Scerif, 2011), suggesting that the VWM capacity is susceptible
to improvement according to one’s experience. Indeed past
behavioral studies showed that long-term AVG experience was
related to VWM improvement using a change detection task
(Boot et al., 2008; Clark et al., 2011; Blacker and Curby,
2013; Wilms et al., 2013; Blacker et al., 2014; Li et al., 2015)
and alternative tasks (Green and Bavelier, 2003, 2006; Sungur
and Boduroglu, 2012; Colzato et al., 2013; Oei and Patterson,
2013; McDermott et al., 2014; Waris et al., 2019). Additionally,
functional magnetic resonance imaging (fMRI) research showed
that AVG experience was related to superior VWM ability
and modulation in the activity of the fronto-parietal cortex
dependently on task difficulty (Moisala et al., 2017). These
findings suggested that the AVG experience may facilitate the
development of VWM.

However, it is still unclear whether the ARSG experience
is related to the development of VWM. Arguably, ARSG may
benefit cognitive development just like AVG because both ARSG
and AVG have the ‘‘action’’ component (Dale and Green,
2017a,b; Bavelier and Green, 2019; Dale et al., 2019). In addition,
an fMRI study suggested that, compared with ARSG non-experts,
experts had superior functional integration between salience and
central executive networks which represent the attention and
working memory severally (Gong et al., 2016). A recent EEG
study demonstrated that the EEG theta-band power (related to
working memory load) was stronger during ARSG playing than
during resting, music listening, and non-AVG gaming (i.e., life
simulation gaming; Gong et al., 2019a). Furthermore, ERP
research showed that prolonged ARSG experience (e.g., League
of Legends) was related to enhancement of visual attention,
which was closely associated with individual differences in
the VWM capacity (Qiu et al., 2018; Gan et al., 2020).
Thus, ARSG offers a new perspective on cognitive and neural
plasticity (Gong et al., 2015, 2017; Kowalczyk et al., 2018;
Gong et al., 2019a,b).

The present study examined the relationship between ARSG
experience and VWM capacity by comparing ARSG experts’
and non-experts’ behavioral and ERP data in a change detection
task—a test typically used to estimate the VWM capacity. The
originality of this study lies in the game genre, the measure
technology, and the cognitive task used. First, unlike previous
studies using AVG genre (Boot et al., 2008; Blacker and Curby,
2013; Oei and Patterson, 2013; Blacker et al., 2014; Waris
et al., 2019), this study utilized ARSG—an increasingly popular
genre in recent years. Second, this study used ERP measures
to test time-sensitive indicators to sub-processes underlying
VWM (Luck, 2014), which may not be readily observable in
behavioral research (Dale and Green, 2017a; Dale et al., 2019).
Third, the participants performed a change detection task that
is indicative of VWM capacity rather than attention tasks (Qiu
et al., 2018; Gan et al., 2020). Although VWM is closely related to
several aspects of attention (Vogel et al., 2005; Astle and Scerif,
2011), visual attention and VWM share different key capacity-
limited mechanisms (Howard et al., 2020). Thus, it is still
unknown whether ARSG experience is related to an enhanced
VWM capacity.

We would predict that ARSG experts have a higher accuracy
rate and larger VWM capacity than non-experts based on
previous behavioral findings (Blacker and Curby, 2013; Oei and
Patterson, 2013; Blacker et al., 2014). Furthermore, the between-
groups differences in the VWM capacity should be indicated
by the differential wave of contralateral delay activity (CDA)
between a four-item array and a two-item array (size 4–size 2;
Vogel et al., 2005). The CDA component is a negative slow-wave
component whose amplitudes get largest during 300–900-ms
time window after memory array beginning over posterior the
region. The CDA amplitude increased as the number of objects
maintained in WM increased; its amplitude gets an asymptotical
limit based on each individual’s memory capacity (Vogel and
Machizawa, 2004; Vogel et al., 2005; Luria et al., 2016; Zhang
et al., 2020). The VWM capacity is indicated by the difference
wave of CDA component between a four-item array and a
two-item array; thus, this difference is greater in high-capacity
individuals than in low-capacity individuals. Thus, we would
predict that ARSG experts should elicit a larger difference wave
of CDA component (size 4–size 2) than non-experts.

MATERIALS AND METHODS

Participants
This study used the recruitment procedure established in
previous research (Qiu et al., 2018; Gong et al., 2019b; Gan
et al., 2020). All the participants in the current study were college
students of the University of Electronic Science and Technology
of China (UESTC) who responded to the recruitment flyers
posted on campus or on the Internet forums hosted by the
UESTC. Prior to this experiment, the participants completed a
questionnaire that collected demographic information, including
age, sex, color vision, handedness, and history of mental and
neurological diseases. None of them reported having a history
of mental and neurological diseases. The participants also
completed a Self-Rating Depression Scale (SDS), a Self-Rating
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Anxiety Scale (SAS), and a seven-question Game Addiction
Questionnaire. Based on the results, eight additional individuals
were excluded prior to the experiment because they had
moderate/severe depression or anxiety (i.e., SDS ≥ 63 or SAS ≥

60; n = 5) and Internet gaming disorders (n = 3). The participants
also reported their: (1) gaming experience in the recent 2 years
and expertise gaming ranking of League of Legends (LOL)—the
ARSG game used in this study; (2) LOL ID, which was used to
validate the participants’ self-reported gaming experience and
expertise; and (3) gaming experience of other gaming genres
in the recent 2 years to ensure that LOL was the major game
genre for all the participants (Qiu et al., 2018; Gong et al., 2019b;
Gan et al., 2020). All the participants were right-handed and had
normal or corrected-to-normal vision and no history of mental
and neurological diseases.

This study defined the experts and the non-experts according
to both time- and skill-based criteria established in previous
studies (Qiu et al., 2018; Gong et al., 2019b; Gan et al., 2020). The
experts had at least 2 years of LOL gaming experience and were
LOLmasters based on their expertise gaming ranking (the top 7%
of players)—an objective, commonly used tool for quantitating
the relative gaming skill levels of LOL players. The non-experts
had less than 0.5 years of LOL gaming experience and were
non-experts according to their expertise gaming rankings (the
lowest 29.92–45.11% of players; Qiu et al., 2018; Gan et al., 2020).
To minimize participant bias, the participants were not notified
of their group membership or the aim of this experiment. The
sample size was determined by G∗Power 3.1.9 software, which
gave the effect size of 0.25, the power of 0.80, and the alpha
of 0.05 (Faul et al., 2007). Forty-one males who were healthy
undergraduate and graduate students of UESTC were recruited.
Four participants were excluded from the final sample because
their accuracy rates in the tasks were below chance (i.e., 50%)
and the EEG data had noise of more than 25%. In total, 18 LOL
experts (M = 20.79, SD = 3.90; n = 18) and 19 non-experts
(M = 20.06, SD = 1.30; n = 19) were recruited.

Fluid Intelligence Measurement
Since fluid intelligence is correlated with the VWM capacity
(Cowan et al., 2005; Cusack et al., 2009; Fukuda et al., 2010),
we collected the participants’ fluid intelligence data as in
Blacker et al. (2014). Prior to the experiment, the participants
were administered a Ravens Progressive Matrices test (RPM, a
standardized non-verbal measure of fluid intelligence), which
is normalized in China (Raven et al., 1990). The reliability and
the validity of the RPM version were from 0.79 to 0.95 and
from 0.54 to 0.71, respectively (Zhang and Wang, 1989). This
test presented a complex visual pattern that a piece was cut
out, and it required the participants to get the absent piece to
complete the pattern. The entire RPM included 60 items, and
the participants were given 45 min to complete the test. Here
we reported the original scores that were not converted into
standard IQ scores.

Apparatus and Stimuli
Using E-prime software to present stimuli on a monitor (refresh
rate, 60 Hz; model, L2250pwD, 22 inches; height, 30 cm; width,

47 cm). The participants were seated 60 cm in front of a monitor
in a recording room with electrical and sound shielding. The
memory items consisted of a series of colored squares, the colors
of which were randomly selected without replacement from eight
easily recognizable colors (RGB values, red: 255, 0, 0; cyan: 0, 255,
255; blue: 0, 0, 255; black: 0, 0, 0; yellow: 255, 255, 0; white: 255,
255, 255; violet: 238, 130, 238; green: 0, 255, 0). The visual angle
of every colored square was 0.65◦

× 0.65◦ (Vogel andMachizawa,
2004; Vogel et al., 2005; Hao et al., 2018).

Procedure
To measure the VWM capacity, the participants were
administered a visual change detection task (see Figure 1;
Vogel and Machizawa, 2004; Vogel et al., 2005; Hao et al., 2018).
The items were presented within 4◦

× 7.3◦ rectangular regions
bilaterally and centered 3◦ to the left and the right of the middle
of the monitor. The memory arrays included one, two, or four
items which were chosen randomly in each hemifield, and the
colors of the items did not repeat in the same hemifield. The
stimuli locations were randomized, and the distance between
items in each hemifield was at least 2◦.

First, a fixation point (‘‘+’’) was presented in the middle of
the gray background (RGB: 192, 192, 192). Then, one arrow
cue was presented above fixation (200 ms), indicating which
side would be followed on this trial. After a random interval
(100–200 ms), a memory array appeared (300 ms). Following
a retention period (900 ms), the test array was presented and
then disappeared after either 2,500 ms or completing a response.
After a random interval (1,000–1,200 ms), the next trial was
started. The participants were informed to hold their eyes on
the center of screen while storing the colors of the items in
the hemifield pointed through the arrow cue. The participants
were asked to decide whether the color of the test array was
different than that of the memory array by pressing a key
on the keyboard interfaced to a computer (identical: press 1;
different: press 2). Accuracy, rather than speed, was stressed
to ensure that any between-groups performance differences
reflected the VWM-related information rather than the speed-
related information that has been shown as improvable by video
gaming experience (Blacker and Curby, 2013; Blacker et al., 2014;
Dale and Green, 2017b).

The colors of the test arrays in the cued hemifield were
identical to the colors of the memory arrays in half of the
trials (i.e., ‘‘un-change’’ trials), while they were different in
the remaining trials (i.e., ‘‘change’’ trials). During ‘‘change’’
trials, an unused colored item in the memory hemifield was
randomly chosen from the rest of colors. Meanwhile, 50%
‘‘change’’ trials were presented in the left of fixation, the
remaining ‘‘change’’ trials were presented in the right of
fixation. There were three levels of size set (one, two, and four
sizes); therefore, there were 12 conditions in all intermixed
within blocks [size (1 vs. 2 vs. 4) × color (change vs. un-
change) × location (left vs. right)] for each group. All the
participants performed at least 24 trials to ensure that they
know the experimental instructions; there were a total of
12 blocks with 60 trials in each block, resulting in a total of
720 trials.
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FIGURE 1 | The experimental procedure.

EEG Acquisition and Preprocessing
The behavioral and the EEG data were recorded simultaneously
while the participants performed the visual change detection task.
The EEG signals were recorded by an EEG32-BT EEG amplifier
(BORUIEN, China), the electrodes were located according to
the 10-20 system, and the signals were digitized with a 1,000-
Hz sampling rate (Klem et al., 1999). All signals were online-
filtered with a 0.05–100-Hz bandpass filter and were online-
referenced to the FCz. The impedance for all electrodes was kept
below 5 KΩ.

The offline EEG analyses were conducted by EEGLAB
(Delorme and Makeig, 2004) and ERPLAB toolboxes (Lopez-
Calderon and Luck, 2014) in MATLAB 2013b (MathWorks,
Natick, NA, USA). The EEG data were first re-referenced
to ‘‘infinity’’ zero operated by the reference electrode
standardization technique (Yao, 2001; Dong et al., 2017). The
re-referenced data were then filtered by using IIR-Butterworth
non-causal filters, with half-power cutoffs of 0.10 and 30 Hz
(roll-off = 12 dB/oct), and two-order 49–51-Hz notch filter
was also used to eliminate power frequency interference. The
filtered data were segmented into 1,100-ms epochs which were
time-locked to the memory array beginning and included
a 100-ms pre-stimuli baseline. Noisy trials were deleted by
the moving window peak-to-peak amplitude method, with
200-ms window width, 100-ms window step, and 100-µV

threshold, and the simple voltage threshold method with
100-µV threshold. To reduce the interference of saccadic eye
movements and blinks, the step method was used with 400-ms
window width, 200-ms window step, and 15-µV threshold
(Luck, 2014). Data of participants whose 25% of trials were
defined as noise were deleted from further analyses. Three
participants were excluded based on this criterion. Among
the responses to ‘‘un-change’’ trials, press ‘‘1’’ responses were
‘‘correct’’ responses; among the responses to ‘‘change’’ trials,
press ‘‘2’’ responses were ‘‘correct’’ responses. Only the trials
of ‘‘correct’’ responses were included in the next analysis. We
averaged the single-trial signals to get the individual-level
amplitudes and averaged the individual-level amplitudes to get
the group-level average amplitudes. We smoothed the group-
level average amplitudes by a 20-Hz low-pass filter for plotting
(Luck, 2014).

Data Analysis
To test the difference in fluid intelligence between experts and
non-experts, we conducted independent-sample t-test for the
RPM original scores of experts and non-experts. For accuracy,
2 (group: experts vs. non-experts)× 3 (size: 1 vs. 2 vs. 4) two-way
analysis of variance (ANOVA) was conducted. The ‘‘change,’’
‘‘un-change,’’ left, and right trials were collapsed and averaged
to ensure statistical power. To further compare the VWM
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capacity between expert and non-expert groups, two-sample
t-test was conducted for the K-values of experts and non-experts.
Specifically, the hit rates (ratio of identified ‘‘change’’ trials
correctly) and the correct rejection rates (ratio of identified ‘‘un-
change’’ trials correctly) were first calculated respectively for each
size. K was then calculated [K = set size × (hit rate − false alarm
rate)] as a marker of the VWM capacity (Vogel and Machizawa,
2004; Cowan et al., 2005; Vogel et al., 2005). K-values of different
sizes were averaged to obtain a single and robust measure of
the VWM capacity within each participant (Weaver et al., 2017;
Feldmann-Wustefeld and Vogel, 2019).

For EEG data, we focus on the CDA component. Since
previous studies showed that the CDA amplitude is the most
evident around the posterior regions, including the posterior
parietal, lateral occipital, and posterior temporal electrode sites
(Vogel and Machizawa, 2004; Vogel et al., 2005), five electrode
pairs at the posterior regions (CP1/CP2, CP5/CP6, P3/P4,
P7/P8, and O1/O2) were selected for further analyses. The
contralateral amplitude was the averaged ERP activity of the
left hemisphere electrode sites while cueing the participants
to attend the memory array of the right hemifield and vice
versa. Similarly, the ipsilateral amplitude was the averaged ERP
activity of the left hemisphere electrode sites while cueing the
participants to attend the memory array of the left hemifield
and vice versa. Then, the CDA component was computed
by subtracting the ipsilateral amplitude from the contralateral
amplitude and averaging the CDA amplitude during 300–900-
ms time window after the memory array beginning (Vogel
and Machizawa, 2004; Vogel et al., 2005; Luria and Vogel,
2011; Luria et al., 2016). The ‘‘un-change’’ and ‘‘change’’ trials
were collapsed and averaged, and the five electrode pairs were
collapsed and averaged to increase the statistical power. Based
on previous studies (Vogel et al., 2005), 2 (group) × 3 (size)
two-way ANOVA cannot be conducted. To test the difference
of CDA amplitude among the three sizes for each group,
one-way ANOVAs were conducted for each group, respectively.
To further compare the VWM capacity of experts with that

of non-experts, independent-sample t-test was conducted to
compare the difference wave of CDA (size 4–size 2) of experts
with that of non-experts. Bonferroni correction was used for
multiple comparisons. For all analyses, the significance level was
specified as 0.05. When the Bonferroni correction was used for
multiple comparisons, the significance level was 0.05 divided by
the number of statistics.

RESULTS

Fluid Intelligence
First, a square transformation was conducted to transform
the data to ensure that the distribution of scores matched
the assumptions of the t-test. To test the difference in fluid
intelligence between both groups, an independent-sample t-test
then compared the original RPM scores between the experts and
the non-experts. The results indicated that the fluid intelligence
scores did not differ between the experts (M = 57.83, SD = 2.01)
and the non-experts (M = 57.11, SD = 2.11; t(35) = 1.16, p = 0.26).

Behavioral Results
The accuracy was mostly at ceiling level; thus, an arc sine
transformation was conducted to transform the accuracy to
ensure that the distribution of data matched the assumptions of
the ANOVA tests. Then, 2 (group: experts vs. non-experts) × 3
(size: 1 vs. 2 vs. 4) two-way ANOVA analyzed the accuracy
data (see Figure 2 and Table 1). The results revealed that the
main effect of size was significant, with accuracy being higher for
smaller sizes (F(2,70) = 246.06, p < 0.001, η2p = 0.88); the main
effect of group was also significant, showing that the experts had
a superior overall accuracy over the non-experts (F(1,35) = 13.76,
p < 0.001, η2p = 0.28). However, the size × group interaction did
not reach significance (F(2,70) = 0.82, p = 0.44, η2p = 0.02).

Because this study focused on the differences between LOL
non-experts and experts, we decomposed this interaction further.
One-sample repeated-measures ANOVAs were conducted in
each group, respectively. For the non-experts, the accuracy rate

FIGURE 2 | The difference between experts and non-experts in accuracy and k-values. Error bars represent mean ± SEM in the left, after correction by Bonferroni
method. ∗p < 0.017, ∗∗p < 0.003; in the right, ∗∗p < 0.01.
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TABLE 1 | Descriptive behavioral results in both experts and non-experts.

Size 1 Size 2 Size 4 k

Non-experts 0.96 (0.03) 0.93 (0.05) 0.77 (0.07) 1.62 (0.22)
Experts 0.98 (0.01) 0.97 (0.03) 0.85 (0.07) 1.87 (0.22)

The values are the mean (standard deviation) values in accuracy and K-values.

significantly differed across the three sizes (F(2,36) = 164.04,
p < 0.001, η2p = 0.90), with the highest accuracy at size 1 and
the lowest accuracy at size 4 (corrected by Bonferroni method).
For the experts, the accuracy significantly differed across the
three sizes (F(2,34) = 93.66, p < 0.001, η2p = 0.85), showing that
the accuracy rates were significantly higher with size 1 and size
2 than with size 4; however, the accuracy rates did not differ
between size 1 and size 2 (corrected by Bonferroni method). In
addition, separate independent-sample t-tests were conducted
for each size. The results showed that, compared with the non-
experts, the experts had a significantly higher accuracy at size 1
(t(35) = −2.92, p = 0.006, Cohen’ d = −0.96), size 2 (t(35) = −2.88,
p = 0.007, Cohen’ d = −0.95), and size 4 (t(35) = −3.32, p = 0.002,
Cohen’ d = −1.09; corrected by Bonferroni method).

We then conducted an independent-sample t-test to compare
the mean VWM capacity [i.e., K = set size × (hit rate − false
alarm rate)] between the experts and the non-experts (see
Figure 2 and Table 1). The mean VWM capacity was 1.62 items
in the non-experts and 1.87 items in the experts. The results
revealed that the experts had significantly larger K-values than
the non-experts, suggesting that the experts had a larger mean
VWM capacity than the non-experts (t(35) = −3.49, p = 0.001,
Cohen’ d = −1.15).

ERP Results
Based on previous studies (Vogel et al., 2005), 2 (group) × 3
(size) two-way ANOVA cannot be conducted. Separate one-way
ANOVAs were instead done to test the difference of CDA
amplitude among three sizes within each group (see Figures 3,
4). For the non-experts, the CDA amplitude elicited across
the three sizes was significantly different (F(2,36) = 27.42,
p < 0.001, η2p = 0.60), showing that the CDA amplitudes
elicited by size 2 and size 4 were significantly more negative
than size 1, but the CDA amplitudes elicited by size 2 and
size 4 did not differ significantly (corrected by Bonferroni
method). For the experts, the CDA amplitude elicited across
the three sizes reached a significant difference (F(2,34) = 39.43,
p < 0.001, η2p = 0.70), with the most negative CDA amplitude
at size 4 and the fewest negative CDA amplitude at size 1
(corrected by Bonferroni method). Notably, the CDA amplitude
elicited by size 4 was more negative than that of size 2 within
the experts.

Then, an independent-sample t-test was conducted to
compare the difference wave of CDA (size 4–size 2) between
the experts and the non-experts (see Figures 3, 4). The results
showed that the difference wave of the CDA (size 4–size 2)
elicited by the experts (M = −0.59, SD = 0.61) was significantly
larger than that of the non-experts (M = −0.22, SD = 0.37),
revealing that the experts had a higher VWM capacity than the
non-experts (t(35) = 2.24, p = 0.03, Cohen’s d = 0.74).

DISCUSSIONS

Using both behavioral and ERP measures, this experiment
tested the relationship between the ARSG experience and the
improvement of the VWM capacity—a critical component for
inducing cognitive and neural plasticity. Both ARSG experts
and non-experts completed a change detection task that is
the typical experimental program used to examine the VWM
capacity; meanwhile, the behavioral and the EER responses were
measured. The behavioral and the ERP results suggested that the
ARSG experts had a larger VWM capacity than the non-experts,
suggesting that a long-term ARSG experience is related to an
improved VWM capacity.

ARSG Experts Outperformed the
Non-experts According to the Accuracy
Data
The ARSG experts outperformed the non-experts, as indicated
by the finding that the accuracy was higher in the experts
than in the non-experts at size 1, size 2, and size 4. Previous
studies found that AVG experience is related to an improved
VWM performance in several tasks (Green and Bavelier, 2003,
2006; Boot et al., 2008; Cusack et al., 2009; Clark et al.,
2011; Sungur and Boduroglu, 2012; Blacker and Curby, 2013;
Colzato et al., 2013; Oei and Patterson, 2013; Wilms et al.,
2013; Blacker et al., 2014; McDermott et al., 2014; Li et al.,
2015; Moisala et al., 2017; Waris et al., 2019). For example,
Blacker et al. found that AVG experts had a VWM advantage
in accuracy over non-experts in a change detection task, similar
to our simple colored stimuli (Blacker and Curby, 2013; Blacker
et al., 2014). Furthermore, given the hypothesis that the AVG
experience enhances cognitive and brain plasticity because
of its ‘‘action’’ mechanics, as AVG: (a) requires players to
respond to stimuli under stringent time pressure; (b) puts a
persistent, large cognitive demand on divided attention; and (c)
demands for timely shifts between focused and divided attentions
(Bavelier and Green, 2019), researchers have examined ARSG
that integrates the ‘‘action’’ mechanics into real-time strategy
gaming. Research demonstrated that the ARSG experience
benefited various cognitive abilities just as the AVG experience
(Gong et al., 2015, 2016, 2017; Dale and Green, 2017a,b;
Kowalczyk et al., 2018; Qiu et al., 2018; Bavelier and Green,
2019; Dale et al., 2019; Gong et al., 2019a,b; Gan et al., 2020).
Consistent with these findings, the current study found that
the ARSG experience was related to the enhancement of the
VWM capacity.

ARSG Experts Have a Higher VWM
Capacity Than Non-experts According to
the K-Values
The ARSG experts have a larger VWM capacity than the
non-experts as indexed by the experts’ larger K-values than those
of the non-experts. The K-values have been used as a behavioral
indicator of the VWM capacity in previous studies—a larger K-
value indicates a higher VWM capacity (Cowan, 2001; Vogel
and Machizawa, 2004; Vogel et al., 2005; Luria et al., 2016;
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FIGURE 3 | Grand averaged event-related potentials (ERPs), elicited by memory array onset with the League of Legends (LOL) non-expert and expert groups.
(A) Grand averaged ERPs of ipsilateral and contralateral brain regions, elicited by memory array onset with the LOL non-expert (left panels) and expert groups (right
panels) at size 1, size 2, and size 4, respectively. (B) Grand averaged ERP difference waves that subtracted the ipsilateral activity from the contralateral activity,
elicited by memory array onset with the LOL non-expert (left panels) and expert groups (right panels) at size 1, size 2, and size 4, respectively. (C) Grand averaged
ERP difference waves with the amplitude of size 4 minus the amplitude of size 2, elicited by memory array onset with LOL non-experts and experts. The grand
averaged wave was time-locked to the memory array onset and averaged across the posterior electrode pairs (CP1/CP2, CP5/CP6, P3/P4, P7/P8, and O1/O2). By
convention, a negative voltage is plotted upwards.

Frontiers in Human Neuroscience | www.frontiersin.org 7 August 2020 | Volume 14 | Article 333

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Yao et al. Action Real-Time Strategy Gaming and Visual Work Memory Capacity

FIGURE 4 | The difference wave of contralateral delay activity (CDA) component between experts and non-experts. The CDA wave was time-locked to the memory
array and averaged across the posterior electrode pairs (i.e., CP1/CP2, CP5/CP6, P3/P4, P7/P8, and O1/O2) and across 300–900 ms after the memory array onset.
Error bars represent mean ± SEM in the left, after correction by Bonferroni method. ∗p < 0.017, ∗∗p < 0.003, ∗∗∗p < 0.0003; in the right, ∗p < 0.05.

Weaver et al., 2017; Feldmann-Wustefeld and Vogel, 2019).
Moreover, several studies used the K-values to examine the
influence of AVG experience on VWM capacity (Boot et al.,
2008; Blacker and Curby, 2013; Blacker et al., 2014) and found
that, compared to AVG non-experts, experts had larger K-values
and that the K-values increased after AVG training. Thus, the
current study supports the positive relationship between ARSG
experience and the enhancement of the VWM capacity.

ARSG Experts Have a Higher VWM
Capacity Than Non-experts According to
the Electrophysiological Marker—CDA
Component
The VWM capacity reached an asymptotic limit faster within
ARSG non-experts than experts as indicated by the finding
that the CDA amplitudes elicited by size 2 and size 4 were
not significantly different within the non-experts, but the CDA
amplitude elicited by size 4 was more negative than that by size
2 within the experts. CDA can indicate the VWM capacity as
CDA amplitude increased as the number of objects held in VWM
increased, and its amplitude gets asymptotical limit for arrays
that meet or exceed the capacity. High-capacity individuals
tend to elicit a greater increase of CDA amplitude when larger
sizes are maintained in VWM, supporting the proposition that
high-capacity individuals have the enhanced abilities to store and
process information (Luck and Vogel, 1997, 2013; Cowan, 2001;
Vogel and Machizawa, 2004; Vogel et al., 2005; McCollough
et al., 2007; Luria et al., 2016). Furthermore, CDA amplitude may
reflect the currently active representations maintained in VWM
rather than other task-relevant factors, such as the amount of
general effort, the degree of executive control and the difficulty
involved in the task, the number of spatial positions in VWM,
and the stimuli contrast (Vogel and Machizawa, 2004; Ikkai
et al., 2010; Luria et al., 2010, 2016; Gao et al., 2013; Ye et al.,
2014). Thus, the CDA component was a reliable indicator of the
VWM capacity, extending the previous behavioral findings that a

long-term AVG experience was positively related to an enhanced
VWM performance.

ARSG experts had a higher VWM capacity than non-
experts, as indicated by the difference wave of CDA (size
4–size 2) that was larger in the experts than in the non-
experts. Vogel et al. (2005) suggested that the VWM capacity
limit can be estimated by a difference wave of CDA amplitude
between a four-item array and a two-item array. Specifically,
high-capacity individuals may elicit a greater difference wave of
CDA amplitude than low-capacity individuals, suggesting that a
two-item array consumed less available VWM capacity within
high-capacity individuals than within low-capacity individuals.
Therefore, the present findings revealed that the ARSG experts
have a larger VWM capacity than non-experts, suggesting that
the prolonged ARSG experience is related to enhancing the
VWM capacity.

Moreover, individual differences in VWMcapacity are related
to general cognitive abilities. For example, such differences are
related to the filtering efficiency of irrelevant visual information,
and individual differences of CDA amplitude reflect both the
ability to retain a different number of objects and the attentional
control ability to select and protect task-relevant items and to
filter irrelevant items (Vogel et al., 2005; Luria et al., 2016).
Green and Bavelier (2012) suggested that enhanced selective
attention supports the AVG players’ superior VWM (Green
and Bavelier, 2012). In addition, the VWM capacity plays an
important role in the transfer from working memory to target
template (Schmidt et al., 2014). Furthermore, the VWM capacity
is correlated with broad cognitive abilities, accounting for 46%
of individual differences in expansive cognitive abilities (e.g.,
attention, reasoning, and social cognition) and 43% of individual
differences in fluid intelligence (Fukuda et al., 2010; Luria et al.,
2016). However, our result did not show a significant difference
in fluid intelligence between ARSG experts and non-experts,
implying that an ARSG experience is related to enhancing
the VWM capacity rather than the general fluid intelligence.
This is consistent with previous findings which state that fluid

Frontiers in Human Neuroscience | www.frontiersin.org 8 August 2020 | Volume 14 | Article 333

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Yao et al. Action Real-Time Strategy Gaming and Visual Work Memory Capacity

intelligence is less plastic (Boot et al., 2008; Dale and Green,
2017a; Bavelier and Green, 2019; Sala and Gobet, 2019).

In addition, this study showed a greater VWM advantage
at the larger set size for ARSG experts (see Figure 2; the
advantage of accuracy: size 1 < size 2 < size 4). Past studies
suggested that individual differences of VWM capacity may
be more evident at larger sizes, which is associated with a
greater requirement for attentional selectivity and control (Vogel
et al., 2005; Fukuda and Vogel, 2009; Kuo et al., 2012; Blacker
and Curby, 2013). Furthermore, research demonstrated that the
underlying mechanism of the AVG players’ superior VWMmay
enhance selective attention by improving attentional control
and executive functioning (Green and Bavelier, 2012). Thus,
consistent with previous findings (Green and Bavelier, 2012;
Blacker and Curby, 2013), the current finding that ARSG experts
had a greater VWM advantage at the larger sizes suggested
that improved attentional ability may devote to this VWM
advantage. Furthermore, we found that, in the ARSG non-
experts, the accuracy rate significantly decreased from size 1 to
size 2 then to size 4, but in the ARSG experts, it did not differ
between size 1 and size 2, which may be due to a ceiling effect
(size 1 = 0.98; size 2 = 0.97). These results also demonstrated
that ARSG experience is related to a significant enhancement in
VWM performance.

Although our findings were consistent to: (1) previous studies
that found ARSG or AVG experience to be related to the
enhancement of attention (Green and Bavelier, 2003; Qiu et al.,
2018; Gan et al., 2020); and (2) substantial evidences showing
the close relation between VWM and attention (Vogel et al.,
2005; Astle and Scerif, 2011; Kuo et al., 2012), the correlational
nature of this study precludes drawing causal inferences about
the adaptive effect of ARSG experience on the improvement
of VWM. Future interventional research should systematically
explore this developmental benefit of video gaming. Next, our
findings demonstrated that a prolonged ARSG experience was
related to the enhancement of the VWM capacity, and improved
attentional ability may devote to this VWM enhancement;
however, the potential role of other cognitive abilities in
contributing to the ARSG players’ VWM advantage still requires
further research.

CONCLUSIONS

This study examined the behavioral and ERP data in ARSG
experts and non-experts at a visual change detection task to

determine whether a long-term ARSG experience was relative
with an enhanced VWM capacity. The behavioral results
showed that an ARSG experience was relative to an enhanced
VWM performance, similar to the AVG genre. Furthermore,
using CDA component (taken as a more precise masker
for VWM capacity than behavioral performance) by ERP
measure, the present study revealed the electrophysiological
mechanism underlying the positive relationship between ARSG
experience and enhancing the VWM capacity. Thus, our data
indicated that a prolonged ARSG experience was related to
improvements in the VWM capacity. However, because of the
correlational nature of this study, the causal relationship
between ARSG experiences on VWM capacity requires
further research.
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