85 research outputs found

    Multistage CC-CV Charge Method for Li-Ion Battery

    Get PDF
    Charging the Li-ion battery with constant current and constant voltage (CC-CV) strategy at −10°C can only reach 48.47% of the normal capacity. To improve the poor charging characteristic at low temperature, the working principle of charging battery at low temperature is analyzed using electrochemical model and first-order RC equivalent circuit model; moreover, the multistage CC-CV strategy is proposed. In the proposed multistage CC-CV strategy, the charging current is decreased to extend the charging process when terminal voltage reaches the charging cut-off voltage. The charging results of multistage CC-CV strategy are obtained at 25°C, 0°C, and −10°C, compared with the results of CC-CV and two-stage CC-CC strategies. The comparison results show that, at the target temperatures, the charging capacities are increased with multistage CC-CV strategy and it is notable that the charging capacity can reach 85.32% of the nominal capacity at −10°C; also, the charging time is decreased

    The effects of high-intensity interval exercise and hypoxia on cognition in sedentary young adults

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. Background and Objectives: Limited research has evaluated the effects of acute exercise on cognition under different conditions of inspired oxygenation. Thus, the purpose of this study was to examine the effects of high-intensity interval exercise (HIE) under normoxia (inspired fraction of oxygen (FIO2): 0.209) and moderate hypoxia (FIO2: 0.154) on cognitive function. Design: A single-blinded cross-over design was used to observe the main effects of exercise and oxygen level, and interaction effects on cognitive task performance. Methods: Twenty inactive adults (10 males and 10 females, 19–27 years old) performed a cognitive task (i.e., the Go/No-Go task) before and immediately after an acute bout of HIE under normoxic and hypoxic conditions. The HIE comprised 10 repetitions of 6 s high-intensity cycling against 7.5% body weight interspersed with 30 s passive recovery. Heart rate, peripheral oxygen saturation (SpO2) and rating of perceived exertion were monitored. Results: The acute bout of HIE did not affect the reaction time (p = 0.204, η2 = 0.083) but the accuracy rate decreased significantly after HIE under both normoxic and hypoxic conditions (p = 0.001, η2 = 0.467). Moreover, moderate hypoxia had no influence either on reaction time (p = 0.782, η2 = 0.004) or response accuracy (p = 0.972, η2 \u3c 0.001). Conclusions: These results indicate that an acute session of HIE may impair response accuracy immediately post-HIE, without sacrificing reaction time. Meanwhile moderate hypoxia was found to have no adverse effect on cognitive function in inactive young adults, at least in the present study

    Severe hypoxia does not offset the benefits of exercise on cognitive function in sedentary young women

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. Purpose: To examine the effect of acute moderate-intensity continuous exercise performed under normobaric severe hypoxia on cognition, compared to sea-level normoxia. Methods: Thirty healthy inactive women randomly performed two experimental trials separated by at least three days but at approximately the same time of day. Executive functions were measured during the follicular stage via an interference control task before (rest) and during exercise with 45% peak power output under normobaric normoxia (PIO 2 = 150 mmHg, FIO 2 = 0.21), and (2) hypoxia (PIO 2 = 87 mmHg, FIO 2 = 0.12, simulated at an altitude of 4000 m). Reaction time (RT), accuracy rate (AC), heart rate, ratings of perceived exertion, and peripheral oxygen saturation (SpO 2 ) were collected before and during exercise. Results: RT (p \u3c 0.05, η 2p = 0.203) decreased during moderate exercise when compared at rest, while a short bout of severe hypoxia improved RT (p \u3c 0.05, η 2p = 0.134). Exercise and hypoxia had no effects on AC (p \u3e 0.05). No significant associations were found between the changes of RT and SpO 2 under the conditions of normoxia and hypoxia (p \u3e 0.05). Conclusions: At the same phase of the menstrual cycle, a short bout of severe hypoxia simulated at 4000 m altitude caused no impairment at rest. RT during moderate exercise ameliorated in normoxia and severe hypoxia, suggesting that both exercise and short-term severe hypoxia have benefits on cognitive function in sedentary young women

    Cryosphere as a temporal sink and source of microplastics in the Arctic region

    Get PDF
    Microplastics (MPs) pollution has become a serious environmental issue of growing global concern due to the increasing plastic production and usage. Under climate warming, the cryosphere, defined as the part of Earth's layer characterized by the low temperatures and the presence of frozen water, has been experiencing significant changes. The Arctic cryosphere (e.g., sea ice, snow cover, Greenland ice sheet, permafrost) can store and release pollutants into environments, making Arctic an important temporal sink and source of MPs. Here, we summarized the distributions of MPs in Arctic snow, sea ice, seawater, rivers, and sediments, to illustrate their potential sources, transport pathways, storage and release, and possible effects in this sentinel region. Items concentrations of MPs in snow and ice varied about 1–6 orders of magnitude in different regions, which were mostly attributed to the different sampling and measurement methods, and potential sources of MPs. MPs concentrations from Arctic seawater, river/lake water, and sediments also fluctuated largely, ranging from several items of per unit to >40,000 items m−3, 100 items m−3, and 10,000 items kg−1 dw, respectively. Arctic land snow cover can be a temporal storage of MPs, with MPs deposition flux of about (4.9–14.26) × 108 items km−2 yr−1. MPs transported by rivers to Arctic ocean was estimated to be approximately 8–48 ton/yr, with discharge flux of MPs at about (1.65–9.35) × 108 items/s. Average storage of MPs in sea ice was estimated to be about 6.1×1018 items, with annual release of about 5.1×1018 items. Atmospheric transport of MPs from long-distance terrestrial sources contributed significantly to MPs deposition in Arctic land snow cover, sea ice and oceanic surface waters. Arctic Great Rivers can flow MPs into the Arctic Ocean. Sea ice can temporally store, transport and then release MPs in the surrounded environment. Ocean currents from the Atlantic brought high concentrations of MPs into the Arctic. However, there existed large uncertainties of estimation on the storage and release of MPs in Arctic cryosphere owing to the hypothesis of average MPs concentrations. Meanwhile, representatives of MPs data across the large Arctic region should be mutually verified with in situ observations and modeling. Therefore, we suggested that systematic monitoring MPs in the Arctic cryosphere, potential threats on Arctic ecosystems, and the carbon cycle under increasing Arctic warming, are urgently needed to be studied in future
    • …
    corecore