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Abstract. Hydromagnetic waves, especially those of fre-

quencies in the range of a few millihertz to a few hertz ob-

served in the Earth’s magnetosphere, are categorized as ultra

low-frequency (ULF) waves or pulsations. They have been

extensively studied due to their importance in the interaction

with radiation belt particles and in probing the structures of

the magnetosphere. We developed an approach to examining

the toroidal standing Aflvén waves in a background magnetic

field by recasting the wave equation into a Klein–Gordon

(KG) form along individual field lines. The eigenvalue so-

lutions to the system are characteristic of a propagation type

when the corresponding eigenfrequency is greater than a crit-

ical frequency and a decaying type otherwise. We apply the

approach to a compressed-dipole magnetic field model of the

inner magnetosphere and obtain the spatial profiles of rel-

evant parameters and the spatial wave forms of harmonic

oscillations. We further extend the approach to poloidal-

mode standing Alfvén waves along field lines. In particular,

we present a quantitative comparison with a recent space-

craft observation of a poloidal standing Alfvén wave in the

Earth’s magnetosphere. Our analysis based on the KG equa-

tion yields consistent results which agree with the spacecraft

measurements of the wave period and the amplitude ratio be-

tween the magnetic field and electric field perturbations.

Keywords. Electromagnetics (wave propagation) – magne-

tospheric physics (magnetospheric configuration and dynam-

ics) – space plasma physics (experimental and mathematical

techniques)

1 Introduction

Hydromagnetic waves are common phenomena in space

plasmas. The associated magnetic and electric field perturba-

tions are observed both on the ground and from space in the

Earth’s magnetosphere. Such waves or magnetic pulsations

of frequencies less than ∼ 1 Hz are typically categorized

as ultra low-frequency (ULF) waves (Fraser, 2006; Kivel-

son, 2006). They can be further divided into subcategories,

such as Pc1-5, Pi1-3 and Pg, with frequencies ranging from

a few hertz down to a few millihertz (Fraser, 2006; Volw-

erk, 2006). Sometimes they exhibit regular and monochro-

matic magnetic and electric field wave forms which are due

to the standing wave mode along magnetic field lines. Such

waves can be identified as Alfvén waves propagating in the

Earth’s magnetosphere, e.g., the recent spacecraft observa-

tion by the Van Allen Probes (Radiation Belt Storm Probes)

of Dai et al. (2013). Based on the direction or the polariza-

tion of the magnetic (or electric) field perturbation in the

linearized assumption, they can be further characterized as

toroidal and/or poloidal-mode waves. In the toroidal mode,

the magnetic field perturbation is in the azimuthal direction,

i.e., along the east–west longitudinal direction (the accom-

panying electric field perturbation has a radial component)

in Earth’s dipole magnetic field. On the other hand, in the

poloidal mode, the magnetic field perturbation has a radial

component, lying in the meridional plane, while the electric

field perturbation is azimuthal.

The basic theory for ULF waves can be traced back to

Dungey (1955, 1963) and Tamao (1965) and has been well
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developed. These waves are interpreted as standing Alfvén

(transverse) or fast-mode hydromagnetic waves in cold plas-

mas immersed in the Earth’s magnetic field (Cummings

et al., 1969; Singer et al., 1981; Southwood and Hughes,

1983). Their characteristics are closely governed by the ge-

ometry of the background magnetic field and the associated

plasma density distribution. More general and sophisticated

numerical simulations were also developed in recent years to

take into account more realistic background field topology,

multiple physical effects and non-idealized boundary condi-

tions (Kabin et al., 2007; Lee and Takahashi, 2006; Claude-

pierre et al., 2010; Degeling et al., 2010). The study of ULF

waves has important implications for wave–particle interac-

tion and diagnostics of magnetospheric structures. In partic-

ular, the critical role that ULF waves play in the energization

and transport of radiation belt particles has been established

based on both theoretical and observational studies (Elking-

ton, 2006; Elkington et al., 2003, 1999; Takahashi et al.,

2002; Ukhorskiy et al., 2005; Dimitrakoudis et al., 2015).

An alternative approach to describing the toroidal (trans-

verse) Alfvén standing waves in an axisymmetric back-

ground magnetic field has been given by McKenzie and Hu

(2010), where the wave equations were cast along an indi-

vidual field line and transformed into a Klein–Gordon (KG)

form. This approach was further formalized and applied to

the Earth’s dipole magnetic field. We later showed in great

detail the formulation and procedures of the approach for a

given background field topology and density distribution in

Webb et al. (2012). The eigenfrequencies obtained from the

eigenmode solutions to the KG equations correspond well to

the ULF waves frequencies in the Pc3-5 range, from a few

to tens of millihertz (Webb et al., 2012). The same approach

was also successfully applied to coronal loop oscillations in

low corona under different background field and plasma con-

ditions (Hu et al., 2012). In the present work, we first apply

the approach to a more realistic Earth background field as

represented by a compressed-dipole model (e.g., Kabin et al.,

2007). We derive the eigenfrequencies and eigenfunctions of

the wave forms for this particular geometry corresponding to

the toroidal mode and compare the results with other similar

studies.

Furthermore, motivated by a recent direct observation of

poloidal standing Alfvén waves in Earth’s magnetosphere by

Dai et al. (2013) (see also Dai et al., 2015; Takahashi et al.,

2013; Liu et al., 2013, 2011), we extend our investigation to

examine the poloidal-mode waves as well. In the case of a

transverse poloidal mode, we show that the wave equation

can also be cast as a KG form along a field line. We then

numerically solve the wave equation for electric field per-

turbation. The corresponding magnetic field perturbation can

be obtained in a similar manner to the approach based on KG

equations for the toroidal mode. In Dai et al. (2013), an event

of a fundamental-mode standing poloidal wave was identi-

fied from the Van Allen Probes measurements. They obtained

the wave period of the azimuthal electric field and the asso-

ciated radial magnetic field oscillations, the relative ratio of

wave amplitudes, and the relative phase shift at the spacecraft

location in the inner magnetosphere. Their analysis provided

direct evidence for the existence of poloidal-mode waves and

their interaction with particles. In addition, the quantitative

measurements of wave properties can be directly compared

with our model output.

This article is organized as follows. Section 2 provides a

brief summary of the toroidal-mode wave equations and their

transformation into the KG form. The general approach of

solving the resulting eigenvalue problem is described and ap-

plied to a compressed-dipole magnetic field model of Earth’s

magnetosphere. The eigenfrequencies and the correspond-

ing wave-form solutions are presented. Section 3 extends

the analysis to the decoupled eigenvalue solutions of the

poloidal-mode waves for a given geometry and presents a

quantitative comparison of the standing transverse Alfvén

wave solutions with the observations of Dai et al. (2013).

Finally, we summarize our results in the last section.

2 Klein–Gordon equations for the toroidal mode

We first consider toroidal wave perturbations (bφ,uφ) in the

magnetic field and fluid velocity in a background axisymmet-

ric (that is, azimuthal wave number m= 0) magnetic field

B0 = (Br ,Bθ ,0), in spherical coordinates (r,θ,φ). The per-

turbation electric field E is given by

E =−u×B =−uφBr θ̂ + uφBθ r̂ = Enn̂, (1)

normal to the background magnetic field line. The φ

(toroidal) components of Faraday’s law and the momentum

equation yield the following wave equations for the pertur-

bations, when evaluated along individual field lines that can

be specified by a functional form r(θ) between the radial dis-

tance r and the colatitude θ (McKenzie and Hu, 2010; Webb

et al., 2012):

∂2bφ

∂t2
=

V 2

r2

{
d2bφ

dθ2
−

1

Lb

dbφ

dθ
+
bφ

Mb

}
(2)

∂2uφ

∂t2
=

V 2

r2

{
d2uφ

dθ2
−

1

Lu

duφ

dθ
+
uφ

Mu

}
, (3)

where V = Bθ/
√
µ0ρ with a given background plasma den-

sity ρ and all coefficients, 1
L

and 1
M

, are functions of θ only.

The particular forms of these coefficients for the velocity per-

turbation, Eq. (3), are (Webb et al., 2012)

−
1

Lu
=

d

dθ
ln

(
Bθ

r

)
,

1

Mu

=−
r

Bθ

d

dθ

(
Bθ

rlu

)
−

1

l2u
,

1

lu
= cotθ +

Br

Bθ
. (4)

The total differentiation along a field line is given

d

dθ
=
∂

∂θ
+
rBr

Bθ

∂

∂r
. (5)
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These wave equations are to be solved along individual field

lines by being transformed into (linear) Klein–Gordon equa-

tions of the ordinary differential equation type. The solutions

are obtained for a given background magnetic field topology

and the associated density distribution and harmonic time de-

pendence, subject to specific boundary conditions. The de-

tailed derivation, formulations and procedures are given in

Webb et al. (2012), including a case study of a standard-

dipole field. We restrict our presentation mostly to a brief

description of the general case below.

2.1 General case

The perturbations of physical quantities as given by Eqs. (2)

and (3) have the general form

∂29

∂t2
=
V 2

r2

[
d29

dθ2
−

1

L
d9

dθ
+

1

M
9

]
, (6)

which can be transformed into the Klein–Gordon form

through the substitution

9 = ψ exp

∫
dθ

2L
. (7)

This yields the KG equation (Morse and Feshbach, 1953)

∂2ψ

∂t2
+ω2

cψ =
V 2

r2

d2ψ

dθ2
, (8)

in which a critical frequency ωc is manifest and given by

ω2
c =

V 2

r2

[
1

2L2
(1+L′)−

1

M

]
. (9)

The amplitude factor in Eq. (7) is defined as

exp

∫
dθ

2L
=

1
√
F(θ)

= f (θ). (10)

This factor arises from the adiabatic geometric growth or de-

cay corresponding to the conservation of wave energy flux

through a flux tube as given by Poynting’s theorem (McKen-

zie and Hu, 2010). For the velocity perturbation, in particular,

the relevant factor is simply f (θ)= (Bθ/r)
−

1
2 (Webb et al.,

2012). That the quantity ωc, given by (9), in Eq. (8) is indeed

a critical frequency as is readily seen by taking a harmonic

time variation ∝ exp(iωt), for then Eq. (8) becomes

d2ψ

r2dθ2
=−

(ω2
−ω2

c )

V 2
ψ ≡−k2ψ. (11)

An equation of this form possesses propagating-type so-

lutions, provided ω > ωc (or ω2 > ω2
c ), and decaying so-

lutions for ω < ωc. If a slowly varying background is as-

sumed, Jeffreys–Wentzel–Kramers–Brillouin (JWKB) solu-

tions yield good approximations to the propagating and non-

propagating behavior. The imposition of boundary condi-

tions (e.g., at the end points of one field line) yield an eigen-

value problem for k (and hence ω). Furthermore, by a change

of variable (Webb et al., 2012), rdθ = Bθ
B
ds, where the field-

line segment is denoted by ds, the above equation can be

written (VA = B/
√
µ0ρ, the Alfvén speed) as

d2ψ

ds2
=−

(ω2
−ω2

c )

V 2
A

ψ. (12)

A normal-mode analysis (plane wave approximation) yields

a dispersion relation ω2
= ω2

c + k
2V 2
A. So the propagating

mode only exists for ω exceeding ωc. Such a threshold does

not exist, however, for ω2
c < 0.

An important and general treatment of the wave modes and

their coupling was developed by Chen and Cowley (1989,

and references therein), especially in the context of field-

line resonances. We share the same theoretical basis in that

we start with ideal magnetohydrodynamic (MHD) equations

and arrive at the equations describing the electric field per-

turbations. In particular, those authors derived the eigenfunc-

tion equation (Eq. 11 therein) for the toroidal-mode stand-

ing Alfvén waves in a dipole field. The eigenfrequencies

are real and the corresponding eigenfunctions form a com-

plete and orthogonal set. Its field-aligned form is similar to

Eq. (12) above, although without the explicit critical fre-

quency embedded. In our study, we explicitly assume ax-

isymmetry (corresponding to azimuthal wave number m=

0), by which the different wave modes are decoupled. We

then seek regular solutions of eigenfunctions corresponding

to discrete real eigenfrequencies along individual field lines

for a given background field geometry that goes beyond a

standard-dipole field. So our approach and results are more

directly comparable with those of Cummings et al. (1969).

It is also worth noting that the Green’s functions for the

KG equation are well known (Morse and Feshbach, 1953),

although for the cases of constant coefficients. They involve

parameters characterizing the system and the surrounding

medium in an infinite domain. The characteristics of the

Green’s functions are reflected in our solutions. For exam-

ple, the Green’s function for an infinite domain also shows “a

characteristically ‘damped’ space dependence” (Morse and

Feshbach, 1953) in a limit similar to the one discussed above.

The Green’s function approach is especially advantageous in

dealing with time-dependent boundary conditions. However,

in our present formulation, it is not clear how a closed-form

Green’s function can be obtained for the KG equation of spa-

tially varying coefficients. Therefore, in the present study, we

focus on a limited scope in seeking numerical eigenvalue so-

lutions to the KG equation subject to a set of homogeneous

boundary conditions within a finite spatial domain in order

to carry out a comparison with direct spacecraft observations

in Earth’s magnetosphere.

The procedures for solving the toroidal wave equations

were given by Webb et al. (2012) and Hu et al. (2012).

We adopt the usual boundary condition En ≡ 0 (i.e., uφ = 0)

when solving the eigenvalue problem for uφ satisfying the

KG Eq. (11). Physically, this corresponds to the situation
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of the field-line footpoints rooted in the Earth’s ionosphere

of infinite conductivity. The toroidal velocity perturbations

are then obtained by solving the KG equation subject to the

boundary condition and the transformation of the amplitude

factor. A set of solutions of different wave forms is obtained

for a discrete set of eigenvalues ω, which usually correspond

to a set of harmonic oscillations with increasing frequency

and number of nodes (Webb et al., 2012). Then the accom-

panying toroidal magnetic field perturbation is calculated by

∂bφ

∂t
=
Bθ

r

duφ

dθ
+
uφBθ

r

1

lb
, (13)

where the coefficient 1
lb
=−

1
lu

is known once the back-

ground magnetic field topology is given. Depending on the

specific eigenmode solution being sought, a constant eigen-

frequency ω and the corresponding eigenfunction solutions

are obtained for both uφ and bφ .

As examples, the cases of a standard-dipole field with a

typical power-law density distribution have been examined

for ULF waves in Earth’s magnetosphere (Webb et al., 2012)

and coronal loop oscillations in the Sun’s corona (Hu et al.,

2012) by the above approach. Figure 1 shows the variation

of the critical frequency ωc and the amplitude factor f (θ)

for an axisymmetric dipole field of the Earth, particularly for

L= 2,4,6 (here the value L, as in “L shell”, represents the

radial distance of one particular field line crossing the Equa-

tor). We use a density model by Kabin et al. (2007) through-

out the present study except for where noted: ρ = ρe

(
5
r

)4

with ρe = 7 amu cm−3 and the radial distance r is measured

in Earth radius. The general profiles of ωc and f are similar

to those presented in Webb et al. (2012), but their magnitudes

are sensitive to the different background density distributions

assumed, as are the eigenfrequencies obtained. Table 1 lists

the eigenfrequency of the fundamental-mode ω0, the corre-

sponding period T0 and locations θ0 along each individual

field line where ω0 = ωc(θ0) for the dipole field. Given the

profiles of ωc(θ) in Fig. 1, we find that for θ0 < θ < π − θ0

where ω > ωc, the solution of the propagation type exists,

while beyond that interval where ω < ωc, a decaying-type

solution exists, as reflected in the resulting wave forms from

the corresponding eigenfunction solutions (see Webb et al.,

2012). Clearly in this case, for one particular L shell, the

waves of frequencies less than the minimum of the corre-

sponding critical frequency ωc will not exist; thus, the finite

real-valued ωc does provide a lower bound on the allowable

wave frequencies. The same set of results obtained from the

case of a compressed-dipole field is to be presented in the

following subsection.

2.2 A compressed-dipole field

A compressed-dipole field is given in the spherical coordi-

nate (which is intrinsically a 3-D field but remains planar at

Table 1. List of parameters forL= 2,4,6 of a standard-dipole field.

L ω0, s−1 T0, s θ0, ◦ r0 (RE)

2 0.95 6.6 49 1.15

4 0.20 32 52 2.48

6 0.085 74 53 3.81

10
-2

10
-1

10
0

L=2

L=4
L=6

ω
c (

s-1
)

θ

0

20

40

L=2

L=4

L=6

1
 
√ F

π 4 π 2 3π 4-1-1-1

-1

Figure 1. The parameter ωc (with B0 = 0.31 Gauss, a = 6.4×

108 cm and ρe = 7 amu cm−3) and the amplitude factor as a func-

tion of θ for various L values of a dipole field. The vertical lines

mark the location (colatitude) where ωc = ω0, the eigenfrequency

of the corresponding fundamental mode.

each φ) (Kabin et al., 2007):

Br =

(
2B0

r3
− b1(1+ b2 cosφ)

)
cosθ, (14)

Bθ =

(
B0

r3
+ b1(1+ b2 cosφ)

)
sinθ, (15)

Bφ = 0. (16)

So our approach based on axisymmetric geometry and wave

Eq. (6) can only be approximately applied to the noon–

midnight meridional planes corresponding to φ = 0 and φ =

π , respectively, on which ∂/∂φ = 0.

Since the field remains planar (i.e., Bφ = 0), it is possible

to derive the field-line equation in each meridional plane (r ,

θ , φ ≡ Const) with r normalized by the Earth radius:

dr

dθ
=
rBr

Bθ
=
r(2/r3

−D)

1/r3+D
cotθ, (17)

where we define a dimensionless quantity D ≡ b1

B0
(1+

b2 cosφ). This leads to

H sin2θ =
r

D · r3− 2
, (18)

whereH is an integration constant. As usual, if we define r =

L when θ = π/2 (L shell), we obtain H = L/(D ·L3
− 2).
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Figure 2. The magnetic field lines of L= 2,4,6 on the noon–

midnight meridional plane for the compressed dipole with B0 =

0.31 Gauss, b1 = 10 nT and b2 = 8. The dashed lines mark the lo-

cations where the eigenfrequencies of the fundamental mode inter-

sect the critical frequencies, i.e., ω0 = ωc as shown in Fig. 3 and

given in Tables 2 and 3. The field-line-aligned orthogonal coordi-

nate (n,s,φ) is also shown.

Table 2. List of parameters for L= 2,4,6 of a compressed-dipole

field for φ = 0 (noon).

L ω0, s−1 T0, s θ0, ◦ r0 (RE)

2 0.96 6.6 50 1.20

4 0.22 29 58 3.06

6 0.10 60 57 5.05

Then the colatitude θF of one of the footpoints of one partic-

ular L shell is obtained by sin2θF = 1/(H ·D− 2H).

Subsequently, the necessary coefficients and factor in the

KG Eq. (11) for the velocity perturbation in the toroidal

mode are obtained as follows:

1

lu
= −

1

lb
=

3

1+D · r3
cotθ, (19)

1

Lu
=

7− 4D · r3
− 2D2r6

(1+D · r3)2
cotθ. (20)

Additional coefficients such as 1/Mu can be derived from

Eq. (4) (Webb et al., 2012). Then Eq. (9) enables the deriva-

tion of an analytic form of the critical frequency ωc appear-

ing in the KG equation and the amplitude factor f (θ), relat-

ing the solution of the KG equation to the original physical

perturbation quantity.

Figure 2 shows the selected field lines for L= 2,4 and 6,

respectively, in both the noon (φ = 0) and midnight (φ = π )

meridional planes of the Earth as illustrated. The asymmetry

between the two sides is clearly seen due to the compression

of the solar wind on the noon side (X> 0). We carry out the

analysis of toroidal-mode waves for each individual field line

via the approach of KG equations outlined in Sect. 2.1.

First of all, the profiles of the critical frequency ωc and

the amplitude factor are calculated and illustrated in Fig. 3,

together with the locations where the eigenfrequencies of

the fundamental mode intersect the critical frequencies. The

Table 3. List of parameters for L= 2,4,6 of a compressed-dipole

field for φ = π (midnight).

L ω0, s−1 T0, s θ0, ◦ r0 (RE)

2 0.94 6.7 48 1.11

4 0.18 34 45 1.86

6 0.060 105 83 (39) 5.81 (1.90)

0

10
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1
√
F
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10
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ω
c (
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)

θ
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F
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0

ω
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)

θ

-1 -1

-1 -1 -1 π 4 π 2 3π 4-1 -1 -1

(a) (b)

Figure 3. The parameter ωc (with B0 = 0.31 Gauss, a = 6.4×

108 cm and ρe = 7 amu cm−3) and the amplitude factor as a func-

tion of θ for various L values for the compressed-dipole field with

(a) φ = 0 and (b) φ = π , respectively. Format is the same as Fig. 1.

The broken part of some curves corresponds to ω2
c < 0.

corresponding parameters of the eigenfrequency ω0, the pe-

riod T0, the colatitude θ0 and the radial distance r0 where

ωc = ω0 are given in Tables 2 and 3 for the noon and mid-

night side, respectively. The profiles of ωc and f show signif-

icant differences among the cases of noon, midnight merid-

ional plane of the compressed dipole, and that of a standard

dipole, especially for greater L values. For example, for the

case L= 6 on the midnight side, the amplitude factor peaks

at a greater value (∼ 50) at the Equator, while the eigenfre-

quency ω0 intersects the critical frequency at two locations

in θ < π/2, one near the North Pole and the other near the

Equator. Therefore, there are two separate regions of propa-

gating solution to the KG equation where ω2 > ω2
c and one

additional region of decaying solution surrounding the Equa-

tor as marked by the pairs of dashed blue lines in Fig. 3b

along congruent points in colatitude. However, for higher-

order harmonics, the eigenfrequency increases with the in-

creasing number of nodes such that it becomes greater than

the critical frequency throughout the whole range of low lat-

itudes enclosing the Equator.

Overall, the values of parameters for the fundamental

mode are comparable among the cases presented in Tables 1–

3, although significant deviations also exist, especially for

the case of L= 6. The periods range between a few to tens

of seconds and a little over 100 s, with increasing L val-

ues, which correspond well to the frequency range of Pc1-5

ULF waves in Earth’s magnetosphere. For the compressed-

dipole cases, the periods also agree well with those reported

by Kabin et al. (2007), where the periods rose from a few

seconds at L= 2, to tens of seconds at L= 4 and to ∼ 100

www.ann-geophys.net/34/473/2016/ Ann. Geophys., 34, 473–484, 2016
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Figure 4. Wave forms of the fundamental mode (L= 6) on the

(a) noon and (b) midnight meridional plane (φ = 0 and π ), respec-

tively. Dashed line denotes the electric field profile, with a multi-

plication by 40. All units are arbitrary. The corresponding eigenfre-

quency is denoted in the middle of each subplot.

seconds at L= 6. The height (radial distances) of the loca-

tions where ωc = ω0 increase with L values, reaching much

greater values in the compressed-dipole case than that in the

standard dipole. The corresponding colatitudes, on the other

hand, remain close to each other, except for the one near the

Equator for L= 6 on the midnight side of the compressed-

dipole case.

The choice of L= 6, which shows the greatest asymmetry

between the noon side and midnight side of the compressed

dipole, is a representative case to illustrate the spatial wave

forms as harmonic solutions to the KG equation. The number

of nodes, n, contained in the solution of uφ increases from

0 in the fundamental mode to consecutive positive integral

numbers for higher-order harmonics. Figure 4a, b show the

fundamental modes for the noon and midnight side merid-

ional planes of the compressed dipole. Similar to a standard-

dipole case (Webb et al., 2012), the bφ profile contains one

node at the Equator, and the oscillating velocity uφ and elec-

tric field En, normal to the background field (see Fig. 2) are

in phase, given the boundary condition En = 0 at both foot-

points. The fundamental-mode frequency on the midnight

side is a little smaller than the noon side and the correspond-

ingEn profile has a significant dip (much reduced amplitude)

near the Equator. These differences are caused by the differ-

ent field-line geometry, the critical frequency and the ampli-

tude factor for the two sides as discussed earlier. Such dif-

ferences persist for higher-order harmonics. Figures 5 and 6

show the wave forms of higher-order harmonics of an in-

creasing number of nodes on the noon and midnight side,

respectively. The eigenfrequency increases with an increas-

ing number of nodes. The uφ and En perturbations remain in

phase, while the bφ oscillation is generally out of phase by

π/2. For the same harmonic mode, the midnight side solution

always has a smaller eigenfrequency and a smaller amplitude

in En around the Equator.
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Figure 5. Harmonic wave forms (arbitrary unit) as derived from the

solutions of the KG equation on the noon meridional plane (φ = 0)

of the compressed-dipole field for (a) n= 1, (b) n= 2, (c) n= 3

and (d) n > 4. Format is the same as Fig. 4 in each subplot.

3 Eigenvalue solutions of the poloidal mode

In the poloidal mode, both the magnetic field and velocity

perturbations of the waves are in the meridional plane. The

normal components perpendicular to the field line (see Fig. 2)

are denoted bn and un, respectively. Therefore, the only os-

cillating electric field is along the φ̂ direction, Eφ and after

multiplied by a scaling factor, εφ = r sinθEφ , is governed by

(Cummings et al., 1969; Oliver et al., 1993; Lee and Taka-

hashi, 2006)

∇
2εφ + 2r sinθ∇εφ · ∇

(
1

r sinθ

)
+
ω2

V 2
A

εφ = 0, (21)

again assuming a harmonic time variation with angular

eigenfrequency, ω. The scaling factor r sinθ arises from

the curvilinear coordinate system, which is different from a

Cartesian geometry. In an equivalent cylindrical coordinate

(R,φ,Z) (∂/∂φ = 0), it is written

∂2εφ

∂R2
−

1

R

∂εφ

∂R
+
∂2εφ

∂Z2
+
ω2

V 2
A

εφ = 0. (22)

In a Cartesian geometry, the differential operator in the

above equation becomes a single Laplacian and εφ ≡ Eφ
(e.g., Cummings et al., 1969). Here the Alfvén speed VA =

B/
√
µ0ρ is again determined by a given background mag-

netic field and density model, and the equation is solved in
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a 2-D domain such as a meridional plane of the compressed-

dipole field for φ = 0 and π only. We are seeking eigenmode

solutions subject to boundary condition εφ ≡ 0 in the present

study. Once the electric field perturbation is obtained, the

magnetic field perturbations, br and bθ , lying in the merid-

ional plane, can be derived via Faraday’s law using the linear

approximations.

Interestingly, the magnetic field perturbation normal to

the field line, bn, can be derived along each individual field

line following the previous approach by the equation below

which follows from the linearized Faraday’s law:

∂bn

∂t
=−

Bθ

r2B sinθ

dεφ

dθ
. (23)

Note that the total derivative d/dθ here is evaluated along

each individual field line and takes the form of Eq. (5). For

harmonic oscillations, if we assign a phase lag of π/2 to bn
relative toEφ at initial time, the left-hand side of Eq. (23) be-

comes ωb̃n, which allows the derivation of a real-valued am-

plitude profile of bn based on solutions to Eq. (21). Similarly,

the tangential component of the magnetic field perturbation

is obtained by

∂bs

∂t
=

1

r sinθ
(∇εφ · n̂)=

1

r sinθ

(
−
Br

rB

∂εφ

∂θ
+
Bθ

B

∂εφ

∂r

)
. (24)

In general, the right-hand side of the above equation does not

vanish, indicating a compressional fast mode solution. On

the other hand, if it does vanish, i.e., ∂εφ/∂n= 0, a standing

Alfvén wave mode should result.

3.1 Poloidal standing transverse (Alfvén) mode

This is a special case corresponding to bs ≡ 0, i.e., ∂εφ/∂n=

0 from Eq. (24) above. This corresponds to a transverse,

Alfvén mode of poloidal polarization of the magnetic field

perturbation that propagates along individual field lines.

Therefore, we can apply exactly the same approach of

Sect. 2. The electric field perturbation εφ still satisfies

Eq. (21). However, when applying the condition bs = 0 and

projecting the partial differential equation (PDE) along an

individual field line defined by a relation between r and θ , a

wave equation of the form similar to Eq. (6) is obtained:

∂2εφ

∂t2
=
V 2

r2

[
d2εφ

dθ2
−

d

dθ
ln

(
B2

B2
θ

g(θ)sinθ

)
dεφ

dθ

]
. (25)

Here the wave speed parameter V 2
≡ B2

θ /(µ0ρ) remains the

same as before, and the function g(θ) is determined from a

given background magnetic field model along an individual

field line r(θ) by

d

dθ
lng(θ)=

B2
r

B2
θ

∂

∂r

(
rBθ

Br

)
. (26)

For example, for a standard-dipole field, the function g(θ)=

sin2θ is obtained.
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Figure 6. Harmonic wave forms on the midnight meridional plane

(φ = π ) of the compressed-dipole field. Format is the same as

Fig. 5.

Therefore, the wave Eq. (25) can also be cast as a KG form

and solved for eigenvalue solutions subject to the bound-

ary condition εφ = 0 at the footpoints of an individual field

line. In turn the magnetic field perturbation can be derived

from Eq. (23). Below, we list the essential parameters for this

mode conforming to the general descriptions in Sect. 2.1:

1

Lε
=

d

dθ
ln

(
B2

B2
θ

g(θ)sinθ

)
, (27)

1

Mε

= 0 (28)

and the amplitude factor

f (θ)=
B

Bθ

√
g(θ)sinθ. (29)

For the dipole field, the following explicit formulas are ob-

tained

f (θ)=
√

sinθ(1+ 3cos2θ), (30)

1

Lε
= cotθ −

3sin2θ

1+ 3cos2θ
. (31)

Thus, the critical frequency ωc can be written based on

Eq. (9). Figure 7 shows, in the same format as before, the

profiles of ωc and f for selected L shells of the dipole field.
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Figure 7. The parameters ωc and f (θ) for the poloidal standing

Alfvén waves of the dipole field. Format is the same as Fig. 1.

Similarly, the critical frequency decreases from the poles to-

ward the Equator where ω2
c becomes negative. The eigen-

frequency of the fundamental mode generally intersects the

critical frequency at mid- to low latitudes. The solution of the

KG equation would also be a combination of a propagation

type near the Equator and a decaying type near the two ends.

The amplitude factor f (θ), on the other hand, shows much

less variation in magnitude and does not depend on L. Fig-

ure 8 shows the fundamental-mode solutions for L= 5, typi-

cal of a standing wave with zero nodes in electric field pertur-

bation. The amplitude of Eφ dips slightly around the Equa-

tor. The eigenfrequency is 0.092 s−1, which corresponds to a

period of 68 s. It compares well with observations to be dis-

cussed below. Table 4 lists the corresponding parameters for

the selected L shells in the same format as Tables 1–3. The

periods are in the same range as those of the toroidal mode.

For a compressed-dipole field, because the relation below

r and θ along a field line is implicit, the relevant quanti-

ties have to be evaluated numerically, especially the function

g(θ) according to Eq. (26). In what follows, we provide solu-

tions to the KG equation for the poloidal transverse mode in a

compressed-dipole field with the magnetic field components

given by Eqs. (14) to (16).

In this case, Eq. (26) becomes

d

dθ
lng(θ)=

2+ 10Dr3
−D2r6

(1+Dr3)2
cotθ = h(θ), (32)

where the radial distance r implicitly depends on θ as in-

dicated by Eq. (18) along an individual field line. Therefore,

the function g(θ) has to be obtained by numerical integration

of h(θ). Subsequently the coefficient functions 1/Lε and its

derivative with respect to θ appearing in the KG equation

can be efficiently and accurately estimated by numerical dif-

ferentiations.

The variations in the critical frequency ωc along individ-

ual field lines of L= 2,4,6 for both the noon and midnight

Table 4. List of parameters for L= 2,4,6 of a dipole field for

poloidal standing Alfvén waves.

L ω0, s−1 T0, s θ0, ◦ r0 (RE)

2 0.76 8.2 57 1.41

4 0.15 42 62 3.09

6 0.062 101 62 4.71
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Figure 8. Wave forms (arbitrary unit) of the fundamental mode

(L= 5) for the poloidal standing Alfvén mode of the dipole field.

Format is the same as Fig. 4.

sides are shown in Fig. 9, together with the amplitude fac-

tor f (θ). Compared with the corresponding variations of the

dipole case in Fig. 7, the critical frequency again exhibits

gaps where ω2
c < 0, but the profiles of the amplitude factor

become dependent on L, for both sides. Then the KG equa-

tion is solved for L= 5 (Mε = 0) and the solutions corre-

sponding to the fundamental mode are given in Fig. 10. They

exhibit very similar behavior to the solution of the dipole

field given in Fig. 8 except that the corresponding eigenfre-

quencies are different such that the one for the dipole field

is in-between the ones for the compressed-dipole cases. The

corresponding periods of the compressed-dipole cases are

52 s and 93 s, respectively, for the noon and midnight side.

It is worth noting that for these poloidal modes of different

background field configurations, gaps always exist in the crit-

ical frequencies where ω2
c < 0. Therefore, the propagating-

type solutions corresponding to ω2 > ω2
c always exist in this

mode. In other words, there is no lower bound in these cases

on the wave frequency.

3.2 A real-case study of poloidal standing Alfvén mode

In this subsection, we demonstrate the validity of our ap-

proach by comparing our analysis result with a recent direct

spacecraft observation of poloidal standing Alfvén waves by

Dai et al. (2013). Since these observations occurred near

∼ 8.5 in magnetic local time (MLT) of the Earth’s magne-
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Figure 9. The parameter ωc and the adiabatic growth and decay fac-

tor as a function of θ for various L values of the poloidal transverse

mode for the compressed-dipole field with (a) φ = 0 and (b) φ = π ,

respectively. Format is the same as Fig. 1. The broken part of some

curves in top panels corresponds to ω2
c < 0.

tosphere, we present the analysis results of the dipole and the

compressed-dipole field, which offer different background

field geometries. Figure 11 shows our results of suitable

physical units for L= 5 with the same set of parameters as

Dai et al. (2013), ρe = 6.4 amu cm−3 and the power index

1.0 of the density variation, to facilitate a direct compari-

son with their results (Fig. 3 therein). Dai et al. (2013) used

a theoretical model of Cummings et al. (1969) and realistic

ionosphere boundary conditions of finite conductivity at the

footpoints of the field line. Therefore, their solutions of Eφ
and bn profiles are of non-zero values at the ends and are

asymmetric about the Equator, whereas ours are symmetric

and Eφ vanishes at the two ends. Nonetheless the spatial pro-

files over the mid- to low latitudes still compare very well.

In both columns, the magnitudes of both perturbations show

a slight decrease toward the Equator in Eφ and a rapid in-

crease toward the ends in bn. In particular, the wave periods

of the two cases are 45 s and 82 s, while the observed value is

84 s, closer to the period of the midnight side. The ratios of

|bn/Eφ | at the spacecraft location (∼ 17◦ south in latitude)

are 0.15 and 0.30 nT/(mV/m) from Fig. 11a and b, respec-

tively, while the observed value is 0.3 nT/(mV/m), identical

to the latter of the ratios. Our result is also consistent with

the observation in that Eφ leads the phase of bn by π/2 as

discussed earlier. The corresponding wave period and ampli-

tude ratio of the fundamental poloidal mode for the standard-

dipole field by using the above set of parameters are 60s and

0.21 nT/(mV/m), given in Fig. 12, respectively, values which

are somewhere in between those values presented for the two

sides of the compressed dipole. The estimates of these quan-

tities in Dai et al. (2013) by a different theoretical model are

62 s and 0.25 nT/(mV/m), respectively. Thus, this particular

ULF wave observation is consistent with our model results.
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Figure 10. Wave forms of the poloidal fundamental mode (L= 5)

on the (a) noon(φ = 0) and (b) midnight (φ = π ) meridional plane,

respectively. Format is the same as Fig. 8.
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Figure 11. The solutions of Eφ (in mV/m), bn (in nT) and the ratio

inbetween (from top to bottom panels) for the compressed dipole

on the (a) noon side and (b) midnight side, to be compared with the

spacecraft observations of Dai et al. (2013). The vertical dashed line

denotes the spacecraft location and the cross marks the measured

ratio (∼ 0.3 nT/(mV/m)) during the time period of measurements.

3.3 Poloidal compressional mode

In the case that bs 6= 0, Eq. (22) has to be solved in a 2-D

domain as an eigenvalue problem subject to the boundary

condition Eφ = 0 on all sides. We have solved the equa-

tion and obtained the corresponding eigenmode solutions

of a discrete set of increasing eigenfrequencies by utilizing

the software package PDE2D.1 The solutions are also cross-

checked with the Matlab PDE toolbox and identical results

are obtained. The computational domain is chosen as r ∈

[1,Lp]RE and θ ∈ [θp,π − θp], where θp = arcsin
√

1/Lp.

We choose Lp = 7 in order to avoid the singular point in

the compressed-dipole field model as well as the singular-

ity along the poles (X = 0). We apply the dipole field and the

compressed-dipole field models and the same density distri-

bution as before for the background field and plasma condi-

tions. Three sets of eigenfrequencies of ascending order of

magnitude (mode) are obtained for both the noon and mid-

night side meridional planes of the compressed-dipole field

and the standard-dipole field. The first 100 eigenfrequencies

1http://www.pde2d.com/
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Figure 13. The first 100 eigenfrequencies for the noon side and

midnight side of the compressed dipole and a standard-dipole field.

are shown in Fig. 13. They generally exhibit a rapid rise at the

lowest numbers of mode; then the trend of increase seems to

become more gradual and eventually linear. At one specific

mode, the eigenfrequency of the noon side is always greater

than that of the midnight side, while the value of the dipole

case is always inbetween, albeit slightly closer to the value of

the noon side. The corresponding eigenmode solutions (not

shown) generally display a regular pattern of nodal structures

of progressively increasing number of nodes with increasing

eigenfrequencies. Our preliminary numerical experiments in-

dicate that the background magnetic field greatly affects the

eigenvalue solutions.

4 Conclusions and discussion

In conclusion, we have examined, in a fairly comprehen-

sive manner, the decoupled toroidal and poloidal-mode hy-

dromagnetic waves in cold plasmas with applications to

the Earth’s inner magnetosphere (ULF waves), represented

by a compressed-dipole field model in addition to the

standard-dipole field. Under certain assumptions, the decou-

pled wave equations are recast as the Klein–Gordon (KG)

form along individual magnetic field lines, especially for

both the toroidal and poloidal transverse Alfvén waves. Such

a KG equation describes the effect of background medium on

wave propagation (Morse and Feshbach, 1953), as embodied

in the term involving the critical frequency, ωc. We obtain the

spatial profiles of the characteristic parameters in the KG for-

mulations including the critical frequency ωc and the ampli-

tude factor f , both as functions of the colatitude, θ . The for-

mer generally exhibits a behavior of minimum values below

0.1 Hz (sometimes 0.01 Hz) near the Equator and increasing

values towards the footpoints, exceeding 1 Hz. This leads to

a spatially composite solution of a propagating type where

the eigenfrequency ω > ωc usually occurs near the Equator

and a decaying type where ω < ωc occurs toward the foot-

points. The latter modulates the amplitude of the wave forms

spatially. We obtain the sets of eigenvalue solutions of in-

creasing eigenfrequencies and the number of nodes in the

wave forms for different background magnetic field geome-

tries. The corresponding wave periods are on the order of∼ 1

to ∼ 100 s and compare well quantitatively with prior stud-

ies and observations. In particular, we present a case study

of a fundamental poloidal Alfvén wave via our approach and

compare our results with a direct spacecraft observation by

Dai et al. (2013). The observed wave period ∼ 84 s and the

amplitude ratio ∼ 0.3 nT/(mV/m) agree with our ranges of

estimates – 45–82 s and 0.15–0.3 nT/(mV/m), respectively.

Thus, we provide a relatively simple yet reliable means of

analyzing ULF wave observations in the magnetosphere.

The main intellectual merits of this work lie in the aspect

of the unique approach via the KG equations for both the

toroidal and poloidal transverse Alfvén waves for a given

background magnetic field geometry. The existence of the

critical frequency indicates the importance of the background

magnetic field topology. For some instances, a propagating

wave mode can only exist above a certain frequency, i.e., the

minimum ωc. In particular, the case study of a direct com-

parison with spacecraft measurements yields consistent re-

sults. However, discrepancies probably occur due to the rel-

atively simple and idealized assumptions about the axisym-

metric geometry, the background and boundary conditions. A

brief discussion of wave energy in terms of wave mixing was

given in Webb et al. (2012). Since we only deal with stand-

ing waves in the present work, no net energy flow results after

time average, irrespective of the critical frequency. The study

of ULF waves is worth pursuing beyond the limitations of the

present approach, especially in conjunction with state-of-the-

art spacecraft observations, such as those returned from the

Van Allen Probes. More realistic study of energy transport

considering nonideal ionospheric boundary conditions will

be pursued in future work. Furthermore, it is also desirable
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to extend the applications to the solar coronal loop oscilla-

tions as we did in Hu et al. (2012).
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