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Abstract: Purpose: To examine the effect of acute moderate-intensity continuous exercise performed
under normobaric severe hypoxia on cognition, compared to sea-level normoxia. Methods: Thirty
healthy inactive women randomly performed two experimental trials separated by at least three days
but at approximately the same time of day. Executive functions were measured during the follicular
stage via an interference control task before (rest) and during exercise with 45% peak power output
under normobaric normoxia (PIO2 = 150 mmHg, FIO2 = 0.21), and (2) hypoxia (PIO2 = 87 mmHg,
FIO2 = 0.12, simulated at an altitude of 4000 m). Reaction time (RT), accuracy rate (AC), heart
rate, ratings of perceived exertion, and peripheral oxygen saturation (SpO2) were collected before
and during exercise. Results: RT (p < 0.05, η2

p = 0.203) decreased during moderate exercise when
compared at rest, while a short bout of severe hypoxia improved RT (p < 0.05, η2

p = 0.134). Exercise
and hypoxia had no effects on AC (p > 0.05). No significant associations were found between the
changes of RT and SpO2 under the conditions of normoxia and hypoxia (p > 0.05). Conclusions: At the
same phase of the menstrual cycle, a short bout of severe hypoxia simulated at 4000 m altitude caused
no impairment at rest. RT during moderate exercise ameliorated in normoxia and severe hypoxia,
suggesting that both exercise and short-term severe hypoxia have benefits on cognitive function in
sedentary young women.

Keywords: hypoxia; exercise; reaction time; accuracy; peripheral oxygen saturation

1. Introduction

A number of studies have shown that exercise, especially moderate-intensity exercise, not only
increases cardio-metabolic health [1,2], but also improves mental health [2–4] in young [5,6] and aged
populations [7–9]. A single bout of moderate exercise enhances cognitive function through increasing
arousal level and improving goal oriented processing in the brain [10]. Additional mechanisms include
exercise-induced increases in neurotransmitters, such as serotonin [11], neuronal growth factors [12–14],
as well as activation of prefrontal cortex activity [15].
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More recently, an emerging line of research has shown that, apart from the benefits of improving
cardiorespiratory fitness in sedentary populations, hypoxic exercise seems to be a novel treatment
strategy for weight loss and comorbidities in obese subjects [16–20]. However, hypoxia itself, may
induce negative cognitive-related consequences as severity increases [4,5]. Insufficient oxygen is
delivered to the brain during exercise under hypoxia, therefore leading to inadequate cerebral
oxygenation and cerebral blood flow (CBF) [21]. As pulse oximetry saturation (SpO2) and cerebral
oxygenation react similarly in response to hypoxia, SpO2 is generally used to indicate hypoxia
degree and can also be utilized as an important predictor for cognitive function under hypoxia [22].
During moderate exercise under severe hypoxia, SpO2 decrement has been reported to attenuate
exercise-induced cognitive improvement and increase reaction time (RT) in a Go/NoGo task in
males [5]. Furthermore, there is a moderate negative correlation between the changes of SpO2 and
RT [5], suggesting that hypoxia, especially severe hypoxia, may offset the benefits of exercise on
cognition. Nevertheless, the findings regarding the cognitive responses to moderate exercise under
severe hypoxia are inconsistent in the existing literature [5,23,24]. Using similar Go/NoGo tasks and
the same fraction of inspired oxygen (FIO2 = 0.12, simulating an altitude equivalent to 4000 m), either
unaffected [25] or improved [4,5,24,26] cognitive performance in response to exercise has been reported.
The discrepant results may be caused by differences in exercise intensities, subjects’ demographic
characteristics (e.g., sex, physical fitness level and health condition), the timing for cognitive task
administration and task difficulty [4,5,23,24,27,28]. Based on the benefits caused by hypoxic exercise
on physical health [1,14,17,20], it is indispensable to clarify whether exercise under severe hypoxia has
any adverse effects on cognitive function.

Complex cognitive processes, such as executive control (behavioral responses to facilitate goal
attainment), error processing (a component of cognitive control involved in processing information to
prevent and/or correct errors), and inhibitory control (ability to inhibit or regulate prepotent attentional
or behavioral responses), are partially regulated by the prefrontal cortex (PFC) [29,30], which is a
brain structure likely to be activated when participants performed the Go/NoGo task [25,26,31–34].
Previous research aimed at investigating the neural underpinnings of Go and NoGo performance
demonstrated, via functional magnetic resonance imaging (fMRI), that PFC was associated with the
inhibitory component (NoGo) of this task, implicating that the Go/NoGo task is involved in response
inhibition RT [35].

The changes in cognitive performance at various levels of hypoxia are well documented in
men [4,5,24,27,36] and in a mixed sample of men and women [23,28]. However, very few related
studies have been conducted on women [37]. Numerous studies investigating sex difference in blood
oxygen saturation reported that females have higher average of SpO2 than males [38] due to sex-specific
differences in hormones [39], which regulate breathing control and indirectly induce changes in
function of the respiratory system [37,38]. Moreover, it has been acknowledged that estrogen has
beneficial effects on CBF [39] as increasing estrogen levels can reduce cerebrovascular resistance [40]
and proliferate CBF velocity [41]. Given the increased cerebral artery vasodilation stimulated by
the increase of estrogen, women are reported to have greater basal CBF than men under hypoxia,
especially in the early follicular stage [42–44]. Considering the neuroprotective role of estrogen in
response to hypoxia [45] and a greater resistance to hypoxia in females [46], the present findings among
male-dominant studies may not be applicable to women.

As such, it is critical that future studies using female subjects be conducted when evaluating
the interrelationships among acute exercise, hypoxia and cognition. Importantly, such studies need
to carefully consider the reproductive phase of the woman, as phase-specific differences in gonadal
steroids has also been demonstrated to influence various cognitive processes, such as executive
functions [39]. For example, increased emotional memory has been observed in the phase of the
menstrual cycle with higher progesterone levels [39]. Moreover, follicle-stimulating hormone has been
found to be negatively, whereas luteinizing hormone positively, correlated to visuospatial ability [47],
and positive correlations between estradiol levels and paired-association learning have also been
documented [48].
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In addition to the well-established moderate exercise benefits [1–10] and hypoxia-related cognitive
risks [49–52], the combined effects of hypoxia and moderate exercise on cognitive performance
specifically in young inactive women may provide a valuable insight in identifying the physiological
factors that affect cognition. In this study, using a relatively low hypoxia (FIO2 = 0.12), we aimed to
examine the acute response of hypoxic exercise on cognition in females during the same menstrual
cycle when habitual physical activity and diet were controlled, as both of these parameters may
influence cognitive function [39,53]. We hypothesized that severe hypoxia would impair cognitive
performance, and the benefit resulting from moderate exercise would be offset when the hypoxia was
imposed to the sedentary young women.

2. Methods

2.1. Study Participants

Volunteers were publicly recruited via flyers posted on the campus of the University of Macau.
The sedentary, healthy young women were included if they met the following criteria: (1) residence at
altitude below 1300 m; (2) neither previous experience of hypoxic training nor prior engagement in
any regular exercise; (3) non-smoking and alcohol drinking habits; (4) having a self-reported regular
menstrual cycle with 28–34 days of length; (5) and not taking any form of the contraceptive pill
or other drugs. After the screening phase, 30 eligible subjects (age: 22.6 ± 3.2 years; body mass
index: 22.1 ± 3.1 kg·m−2; VO2peak: 26.3 ± 5.0 mL·kg−1·min−1) from 54 volunteers were recruited
to participate in this study. All participants gave their informed consent for inclusion before they
participated in the study. The protocol was approved by the Ethics Committee of the University of
Macau (MYRG2018-00216-FED). Participants provided consent per the principles of the Declaration of
Helsinki. All participants completed the experimental sessions during their follicular stage, which
was defined as the time from the first day to the seventh day after the menses, to ensure a stable
physiological state.

2.2. Preliminary Testing and Familiarization

The preliminary testing session was performed at the beginning of the follicular stage of the
menstrual cycle. Body weight was measured with light clothing and bare feet in a fasting state (Tanita
MC-180 MA, Tanita Corporation, Tokyo, Japan). Participants exercised on a stationary cycle ergometer
(Monark 839e, Vansbro, Sweden) with a graded workload that increased each stage by 15 watts
every 3 min beginning at 25 watts at 60 revolutions per minute (rpm). VO2peak was examined using
a pre-calibrated breath-by-breath analysis system (Meta-Max 3B, Cortex Biophysik GmbH, Leipzig,
Germany). Heart rate (HR; Polar F4M BLK, Kempele, Finland) and ratings of perceived exertion
(RPE; 6–20 Borg scale) were recorded during the graded maximal exercise test. The test was terminated
when participants performed to volitional exhaustion, were not able to maintain a pedaling rate of
60 rpm any longer, or RPE reached 18 or higher. The highest VO2 averaged over the final 30 s was
identified as the VO2peak. During the familiarization, subjects learned the experimental procedures
and practiced the cognition task multiple times until the number of erroneous trials in each session
were less than five (one practice session includes 40 trials).

2.3. Experimental Procedure

After a session of preliminary testing and familiarization with the executive cognition task, all
subjects visited the laboratory twice at their follicular stage. They performed two experimental trials
separated by at least three days but at approximately the same time of day: normoxia (NOR, inspiratory
oxygen pressure (PIO2) = 150 mmHg, FIO2 = 0.21) and normobaric hypoxia (HYP, PIO2 = 87 mmHg,
FIO2 = 0.12). We adopted a single-blinded crossover design, with the subjects being unaware of
the oxygen condition, and the two experimental trials were performed in a counterbalance order to
offset any potential learning effects. Hypoxic training system (Everest Summit II Hypoxic Generator,
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New York, NY, USA) was used to monitor the conditions for normobaric hypoxia trial corresponding
to ~4000 m. At the beginning of the experiment, participants rested quietly in a seated position for
10 min with a mask connected to either normoxia or hypoxia condition in which they were blinded to.
Then, they cycled for 10 min at a free pedaling rate at 45% of peak power output (PPO), which was
calculated with the formula: PPO = Wcom + (t/180) × ∆W, where Wcom is the workload of the last
stage in the VO2peak test, t is the number of seconds for which the incomplete stage was sustained,
and ∆W is the load increment (25W) [54]. Cognitive tasks were performed on the 10th minute (at rest)
and on the 17th minute (i.e., 5 min after exercise started) of the experimental timeline. The whole
experimental session lasted for approximately 22 min (Figure 1). In addition, SpO2 was measured
by a pulse oximeter (Radical-7 Pulse CO-Oximeter, Masimo, Irvine, CA, USA) placed on the right
index finger [55]. HR and RPE were recorded before and after each cognitive task. The diameter of the
resistance vessels in the brain is much greater in severe hypoxia equivalent to altitudes above 4500 m
than in normoxia [56], implying that this may be the threshold in impairing cognitive function [57].
Experimental procedures are presented in Figure 1.
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2.4. The Interference Control Task

In this study, cognitive performance was evaluated through a modified version of the traditional
Go/NoGo task [4,5], herein referred to as an interference control task, which provides a simple
computerized test to assess these PFC-dependent cognitive processes. The traditional Go/NoGo task
involves a cognitive and physical inhibitory component during the NoGo trial. For our experiment,
we modified this component by asking participants, during the NoGo trial, to press a different key
button than that required for the Go trial. Further details are explained below. The impetus for this
modification is because far fewer studies have evaluated the effects of exercise on this [interference
control] executive function component.

The RT and accuracy rate (AC) were collected and analyzed using an E-prime program which
was installed on a 15’6 inch Lenovo B560 laptop. The laptop was placed on a portable desk in front
of the cycle ergometer that can be easily moved to subjects for the cognitive task during exercise.
One cognitive task included 40 trials and took approximately 2 min to complete. For each stimulus,
two symbols would take turn to show on the middle of the screen (i.e., a square printed in red or
blue color, and then followed by a number or letter printed in black color). A combination of a red
square followed by a number or a combination of a blue square followed by a letter indicated the
“Go” signal, in which subjects had to respond by pressing the “F” button on the keyboard with the left
index finger. If the stimulus appeared in a contrary combination of a red square followed by a letter
or blue square followed by a number, “NoGo” signal was presented. Subjects needed to respond by
pressing the “J” button with the right index finger. The stimulus disappeared from the screen when a
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response was given, or else remained on screen for 2 s. A fixation cross would appear on screen for 2 s
after each trial as an inter-stimulus interval. The chances of responding “Go” and “NoGo” are fifty
percent, respectively. In this study, the average response time (ms) and the AC (%) form all trials were
calculated to measure inhibitory control.

2.5. Physical Activity and Dietary Assessments

In order to minimize the potential confounding effects of changes in energy balance, physical
activity and dietary behavior, participants were required to strictly maintain their habitual dietary
and lifestyle behavior during the experiment. Physical activity and dietary behavior were recorded
for 2 days (one day before and the day of the experiment) during each experimental trial. Physical
activities were monitored using a previously validated pedometer (Ymax SW-200 Digiwalker, Tokyo,
Japan) [1,58], while the size and weight of food and beverage intakes were recorded by the Chinese
nutrition action program (CNAP) questionnaire [1,59]. The macronutrient proportion and daily energy
intake were calculated using the Sports Nutrition Centre of the National Research Institute of Sports
Medicine (NRISM) dietary and nutritional analysis system (version 3.1).

2.6. Statistical Analysis

After the normality and homogeneity of the variance were determined, paired t-tests were
conducted to confirm the consistency of physical activity and dietary behavior. Two-way repeated-
measures ANOVAs were conducted for conditions of oxygen (NOR and HYP) and exercise (rest and
exercise) as within-subject factors for the variables of physiological parameters (i.e., HR, RPE and
SpO2) and the interference control task. The degrees of freedom were corrected using the Huynh
Feldt Epsilon when the assumption of sphericity was violated. Tukey’s post hoc test was conducted to
compare mean differences where appropriate. Partial eta-squared (η2

p) was used to determine the
effect sizes of the main and interaction effects. The effect size was considered small if η2

p < 0.06 and
large if η2

p > 0.14 [60]. In addition, Pearson’s product-moment correlation coefficients were calculated
to evaluate the correlations between the changes of RT and SpO2. All data is expressed as mean ± SD.
The significance level was set at 0.05 (IBM SPSS Statistics Base 22.0, IBM, Chicago, IL, USA).

3. Results

3.1. Habitual Physical Activity and Dietary Profile

There were no significant differences in daily activity (NOR: 8614 ± 2782 steps; HYP: 8109 ± 2797
steps) between the two trials. With the similar composition of nutrients by 51% carbohydrate, 16%
protein and 33% fat, no significant trial differences were found in calorie intake (NOR:1780 ± 429 kcal;
HYP:1712 ± 394 kcal).

3.2. Physiological Parameters

Table 1 displays the physiological responses to the two experimental trials. Condition
(F(1,29) = 14.195, p < 0.001, η2

p = 0.348) and exercise (F(1,29) = 475.500, p < 0.001, η2
p = 0.942) had a

significant main effect on HR change. When compared to normoxia and at rest, higher HR were found
in hypoxia and during exercise. Regarding SpO2, condition (F(1,29) = 308.173, p < 0.001, η2

p = 0.904)
and exercise (F(1,29) = 52.244, p < 0.001, η2

p = 0.634) had significant main effects and an interaction
effect (F(1,29) = 40.930, p < 0.001, η2

p = 0.574). Further post-hoc Tukey analyses indicated that, when
compared to normoxia, SpO2 in hypoxia experienced significant decreases either at rest (p < 0.001)
or during exercise (p < 0.001). The reduction of SpO2 during exercise (p < 0.001) was only found in
hypoxia as compared in normoxia. Exercise (F(1,29) = 184.415, p < 0.001, η2

p = 0.864) but not hypoxia
(F(1,29) = 1.710, p = 0.201, η2

p = 0.056) caused an increase in RPE.
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Table 1. Physiological responses to moderate intensity exercise in normoxia or hypoxia.

Variables
NOR HYP

Rest Exercise Rest Exercise

HR 78 ± 11 129 ± 15 b 84 ± 12 141 ± 18 ab

%HRmax 73 ± 8 80 ± 10 a

RPE 7 ± 1 11 ± 2 b 6 ± 1 12 ± 2 b

SpO2 98 ± 2 97 ± 3 87 ± 6 a 77 ± 7 ab

NOR, normoxia; HYP, hypoxia; HR, heart rate; %HRmax, percentage of maximum heart rate; RPE, rate of perceived
exertion; SpO2, pulse oximetry saturation; a: p value less than 0.05 under HYP vs. NOR; b: p value less than 0.01
under HYP and NOR.

3.3. Cognitive Function

Figure 2 shows the results of RT (Figure 2A) and AC (Figure 2B) in the interference control task
under different conditions. There were significant main effects of exercise (F(1,29) = 8.336, p = 0.011,
η2

p = 0.203) and condition (F(1,29) = 5.425, p = 0.043, η2
p = 0.134) on RT, whereas no interaction effect

was found between exercise and condition (F(1,29) = 0.524, p = 0.573, η2
p = 0.011) on RT. Based on the

interest in knowing the difference of condition on RT at rest, we did a further paired t-test analysis and
it demonstrated that resting RT under hypoxia was faster than under normoxia (p = 0.012)). These
results indicated that both moderate exercise and short-term hypoxia improved RT. Regarding the
AC of the interference control task, no main effects of exercise (F(1,29) = 0.487, p = 0.445, η2

p = 0.020)
or condition (F(1,29) = 0.777, p = 0.796, η2

p = 0.002) was found, and there was no interaction effect
(F(1,29) = 0.030, p = 0.798, η2

p = 0.002) neither. The changes of RT were not associated with the changes
of SpO2 in normoxic (r = 0.16, p = 0.416) and hypoxic conditions (r = −0.20, p = 0.309).
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4. Discussion

The purpose of this study was to examine the effect of acute moderate-intensity continuous
exercise performed under normobaric severe hypoxia on cognition, compared to sea-level normoxia,
among young sedentary women. The key findings in this study were that both acute moderate-intensity
exercise and severe hypoxia (~30 min) improved RT, with these alterations not being associated with
changes in SpO2.

4.1. Cognitive Function at Rest Under Hypoxia

In the present study, at the beginning of each experimental trial, we measured cognitive function
at rest under normoxia and hypoxia. In contrast to our hypothesis, RT decreased with an unaffected AC
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after resting under hypoxia for 10 min. This result is consistent with some previous findings, suggesting
that hypoxia did not impair cognitive performance [4,5]. However, using similar hypoxic exposure
levels (FIO2 = 0.12 or 0.125), there are several studies reporting unchanged [28] or slower RT [23], and
decreased AC [24] in male subjects [24] and mixed subjects [23,28]. Compared to these studies [23,28],
the female subjects in the present study showed a relatively higher SpO2 value. The different SpO2

response to the same hypoxia level between males and females may, in part, be explained by the
stronger resistance to hypoxia in women [46]. This may have occurred given the fact that we conducted
this study during the early follicular stage of the female subjects when estrogen hormones were at a
relatively high level, and thus, may provide a neuroprotective response to hypoxia [45]. In support of
this notion, various cognitive parameters are heightened during the follicular stage, at times of higher
estrogen or progesterone, were reported in previous studies [39,48,61].

4.2. Cognitive Function During Exercise Under Hypoxia

Studies regarding the impact of hypoxic exercise on cognitive performance are mainly focused
on males [4,5,24,27,36] or mixed subjects [23,28]. Thus, studies on this topic using female subjects is
rare. The present study revealed that acute moderate exercise increased the reaction speed (η2

p = 0.203,
indicating large effect) without affecting the response accuracy in sedentary women, suggesting that
moderate exercise under severe hypoxia promoted a beneficial effect on cognitive function. In the
present study, SpO2 was reduced to 87 ± 6% after resting in hypoxia and further decreased to 77 ± 7%
after exercise in hypoxia. However, no adverse cognitive consequence was observed, which might be
compensated by an increased CBF. It has been reported that when a conflict exists between preserving
brain O2 delivery or restraining CBF to avoid potential damage and an elevated perfusion pressure
after exercise, the priority is given to brain O2 delivery to secure maintenance of cognitive function
and avoiding potential damage by hypoperfusion [56,62]. Furthermore, the observation of that severe
hypoxia did not attenuate exercise-induced benefits in cognition in young women in the present
study is supported by, at least partially, the aforementioned fact that women have fundamentally
higher basal CBF than men under both normoxic [63,64] and hypoxic conditions [65] because of the
increased cerebral artery vasodilation stimulated by the increase of estrogen [42–44,65]. Despite this,
further studies should consider evaluating whether the follicular stage moderates the interrelationship
between exercise and hypoxia on cognitive function in females.

Using a similar experimental design and the same hypoxic condition, similar cognitive results
were previously reported in male subjects [5], despite the fact that they used a relatively lower exercise
intensity. Under normoxia and hypoxia, the present study used the same absolute intensity (45% PPO),
which was equivalent to 73% HRmax under normoxia and 80% HRmax under hypoxia. Differently,
Komiyama et al. [5] evaluated Go/NoGo task performance during nomoxic and hypoxic exercise with
a relative intensity at 50% VO2peak (corresponding to ~60% of HRmax), which was lower than our
study. Despite the greater exercise intensity, the reduction of SpO2 in the female subjects of our study
was the same as the male subjects in their study [5], both decreasing from 87% to 77%. The lack of
difference in SpO2 response under higher-intensity exercise might be explained by the fact that females
have higher resistance to hypoxia [46].

Although interference control tasks can be used to evaluate motor executive and inhibitory
processing [28], conclusion of the effect of exercise under short-term normobaric hypoxia on cognition
still remains uncertain due to diverse methodological issues (e.g., differences in cognitive task-specific
measure, subjects, severity of hypoxia, hypoxic exposure time) [5,23,24,27,28,36]. The high AC in our
study (NOR: 89%, HYP: 90%) indicated that cognitive data was not affected by subjective responses,
such as skill level and motivation. The task difficulty and testing time might have been too low to
cause a negative effect on cognitive performance, which might account for the discordance between
conclusions of cognitive impairment resulting from hypoxic exercise in some previous studies [23,28]
and cognitive enhancement. Our results suggest that the hypoxic condition (12% O2) was not sufficient
to affect cognitive performance. In addition, the present study investigated only one cognitive task,
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thus, future investigations should consider evaluating multiple tasks when designing programs to
better clarify the relationship between acute exercise and cognition under different levels of hypoxia.

4.3. Strengths and Limitations

This study had several strengths, including the relatively large sample size, single-blinded oxygen
conditions, cognition assessment in the same phase of the menstrual cycle, and a monitored status
of habitual physical activity and energy intake, which the majority of others studies having not
considered [5,23,24,26,45,46,66]. Despite these strengths, there are several limitations of our study.
First, cerebral blood flow and cerebral oxygenation was not recorded, and thus, mechanism regarding
cognitive processes under hypoxic exercise needs to be further evaluated. Additionally, calendar-based
measurement of menstrual cycle alone may be insufficient for interpretation, and the hormones of
estrogen and progesterone should be tested to confirm the same phase of the menstrual cycle.

5. Conclusions

In summary, the present study found that a short bout (~30 min) of severe hypoxia improved
cognitive function when compared to normoxia in young sedentary women with the same menstrual
period, similar daily energy intake and habitual physical activity. Furthermore, a short bout of exercise
induced cognitive benefits in RT, and these alterations were not associated with the changes in SpO2.
In addressing the discrepant findings and accounting for differences in cognitive function, both
absolute and relative exercise intensities should be considered in future research. As males and
females seem to have different physiological and cognitive responses to severe hypoxia, whether
sex-specific hormones influence this process needs to be further clarified. Moreover, future studies
may also consider adopting different exercise modes (e.g., high-intensity interval exercise, resistance
exercise) and using more sophisticated and higher-order cognitive tasks to evaluate cognitive function,
meanwhile, monitoring CBF and cerebral oxygenation profiles to reveal the potential mechanisms.

Author Contributions: The following statements should be used “Conceptualization, Y.H., Q.S., Z.K., and
J.N.; Methodology, L.Z., Z.K., and J.N.; Software, Q.S.; Validation, L.Z., Z.K., and J.N.; Formal Analysis, Q.S.;
Investigation, O.-K.L.; Resources, Z.K.; Data Curation, Q.S.; Writing-Original Draft Preparation, O.-K.L. and L.Z.;
Writing-Review & Editing, O.-K.L., S.S., P.D.L., and L.Z.; Visualization, O.-K.L. S.S., and P.D.L.; Supervision, L.Z.,
Y.H., and Z.K.; Project Administration, Z.K.; Funding Acquisition, Z.K.”, please turn to the CRediT taxonomy
for the term explanation. Authorship must be limited to those who have contributed substantially to the
work reported.

Funding: The study was supported by a research grant from University of Macau (MYRG2018-00216-FED).
The views expressed are those of the authors and not necessarily those of the UM.

Acknowledgments: We would like to thank participants of this study for their time.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kong, Z.; Shi, Q.; Nie, J.; Tong, T.K.; Song, L.; Yi, L.; Hu, Y. High-Intensity Interval Training in Normobaric
Hypoxia Improves Cardiorespiratory Fitness in Overweight Chinese Young Women. Front. Physiol. 2017, 8,
175. [CrossRef] [PubMed]

2. McMorris, T.; Sproule, J.; Turner, A.; Hale, B.J. Acute, intermediate intensity exercise, and speed and accuracy
in working memory tasks: A meta-analytical comparison of effects. Physiol. Behav. 2011, 102, 421–428.
[CrossRef]

3. Nanda, B.; Balde, J.; Manjunatha, S. The Acute Effects of a Single Bout of Moderate-intensity Aerobic Exercise
on Cognitive Functions in Healthy Adult Males. J. Clin. Diagn. Res. 2013, 7, 1883–1885. [PubMed]

4. Ando, S.; Hatamoto, Y.; Sudo, M.; Kiyonaga, A.; Tanaka, H.; Higaki, Y. The Effects of Exercise Under Hypoxia
on Cognitive Function. PLoS ONE 2013, 8, e63630. [CrossRef] [PubMed]

5. Komiyama, T.; Katayama, K.; Sudo, M.; Ishida, K.; Higaki, Y.; Ando, S. Cognitive function during exercise
under severe hypoxia. Sci. Rep. 2017, 7, 10000. [CrossRef] [PubMed]

http://dx.doi.org/10.3389/fphys.2017.00175
http://www.ncbi.nlm.nih.gov/pubmed/28386234
http://dx.doi.org/10.1016/j.physbeh.2010.12.007
http://www.ncbi.nlm.nih.gov/pubmed/24179888
http://dx.doi.org/10.1371/journal.pone.0063630
http://www.ncbi.nlm.nih.gov/pubmed/23675496
http://dx.doi.org/10.1038/s41598-017-10332-y
http://www.ncbi.nlm.nih.gov/pubmed/28855602


Int. J. Environ. Res. Public Health 2019, 16, 1003 9 of 11

6. Schwarb, H.; Johnson, C.L.; Daugherty, A.M.; Hillman, C.H.; Kramer, A.F.; Cohen, N.J.; Barbey, A.K. Aerobic
fitness, hippocampal viscoelasticity, and relational memory performance. NeuroImage 2017, 153, 179–188.
[CrossRef] [PubMed]

7. Gijselaers, H.J.; Elena, B.; Kirschner, P.A.; de Groot, R.H. Physical Activity, Sleep, and Nutrition Do Not
Predict Cognitive Performance in Young and Middle-Aged Adults. Front. Psychol. 2016, 7, 642. [CrossRef]

8. Ishihara, T.; Sugasawa, S.; Matsuda, Y.; Mizuno, M. Relationship between sports experience and executive
function in 6-12-year-old children: Independence from physical fitness and moderation by gender. Dev. Sci.
2017. [CrossRef]

9. Samuel, R.D.; Zavdy, O.; Levav, M.; Reuveny, R.; Katz, U.; Dubnov-Raz, G. The Effects of Maximal Intensity
Exercise on Cognitive Performance in Children. J. Hum. Kinet. 2017, 57, 85–96. [CrossRef]

10. Brisswalter, J.; Collardeau, M.; René, A. Effects of acute physical exercise characteristics on cognitive
performance. Sports Med. 2002, 32, 555–566. [CrossRef]

11. Winter, B.; Breitenstein, C.; Mooren, F.C.; Voelker, K.; Fobker, M.; Lechtermann, A.; Krueger, K.; Fromme, A.;
Korsukewitz, C.; Floel, A.; et al. High impact running improves learning. Neurobiol. Learn. Mem. 2007, 87,
597–609. [CrossRef]

12. Ferris, L.T.; Williams, J.S.; Shen, C.L. The effect of acute exercise on serum brain-derived neurotrophic factor
levels and cognitive function. Med. Sci. Sports Exerc. 2007, 39, 728–734. [CrossRef]

13. Tsai, C.L.; Chen, F.C.; Pan, C.Y.; Wang, C.H.; Huang, T.H.; Chen, T.C. Impact of acute aerobic
exercise and cardiorespiratory fitness on visuospatial attention performance and serum BDNF levels.
Psychoneuroendocrinology 2014, 41, 121–131. [CrossRef]

14. Tsai, C.L.; Wang, C.H.; Pan, C.Y.; Chen, F.C.; Huang, T.H.; Chou, F.Y. Executive function and endocrinological
responses to acute resistance exercise. Front. Behav. Neurosci. 2014, 8, 262. [CrossRef]

15. Stavres, J.; Gerhart, H.D.; Kim, J.H.; Glickman, E.L.; Seo, Y. Cerebral Hemodynamics and Executive Function
During Exercise and Recovery in Normobaric Hypoxia. Aerosp. Med. Hum. Perform. 2017, 88, 911–917.
[CrossRef]

16. Camacho-Cardenosa, A.; Camacho-Cardenosa, M.; Burtscher, M.; Martínez-Guardado, I.; Timon, R.;
Brazo-Sayavera, J.; Olcina, G. High-Intensity Interval Training in Normobaric Hypoxia Leads to Greater Body
Fat Loss in Overweight/Obese Women than High-Intensity Interval Training in Normoxia. Front. Physiol.
2018, 9. [CrossRef]

17. Camacho-Cardenosa, M.; Camacho-Cardenosa, A.; Martínez Guardado, I.; Marcos-Serrano, M.; Timon, R.;
Olcina, G. A new dose of maximal-intensity interval training in hypoxia to improve body composition and
hemoglobin and hematocrit levels: A pilot study. J. Sports Med. Phys. Fit. 2017, 57. [CrossRef]

18. Kayser, B.; Verges, S. Hypoxia, energy balance and obesity: From pathophysiological mechanisms to new
treatment strategies. Obes. Rev. 2013, 14, 579–592. [CrossRef]

19. Millet, G.P.; Debevec, T.; Brocherie, F.; Malatesta, D.; Girard, O. Therapeutic use of exercising in hypoxia:
Promises and limitations. Front. Physiol. 2016, 7, 224. [CrossRef]

20. Kong, Z.; Zang, Y.; Hu, Y. Normobaric hypoxia training causes more weight loss than normoxia training
after a 4-week residential camp for obese young adults. Sleep Breath. 2014, 18, 591–597. [CrossRef]

21. Torres-Peralta, R.; Morales-Alamo, D.; Gonzalez-Izal, M.; Losa-Reyna, J.; Perez-Suarez, I.; Izquierdo, M.;
Calbet, J.A. Task Failure during Exercise to Exhaustion in Normoxia and Hypoxia Is Due to Reduced
Muscle Activation Caused by Central Mechanisms While Muscle Metaboreflex Does Not Limit Performance.
Front. Physiol. 2015, 6, 414. [CrossRef]

22. McMorris, T.; Hale, B.J.; Barwood, M.; Costello, J.; Corbett, J. Effect of acute hypoxia on cognition: A
systematic review and meta-regression analysis. Neurosci. Biobehav. Rev. 2017, 74, 225–232. [CrossRef]

23. Lefferts, W.K.; Babcock, M.C.; Tiss, M.J.; Ives, S.J.; White, C.N.; Brutsaert, T.D.; Heffernan, K.S. Effect of
hypoxia on cerebrovascular and cognitive function during moderate intensity exercise. Physiol. Behav. 2016,
165, 108–118. [CrossRef]

24. Seo, Y.; Burns, K.; Fennell, C.; Kim, J.H.; Gunstad, J.; Glickman, E.; McDaniel, J. The influence of exercise on
cognitive performance in normobaric hypoxia. High Alt. Med. Biol. 2015, 16, 298–305. [CrossRef]

25. Sudo, M.; Komiyama, T.; Aoyagi, R.; Nagamatsu, T.; Higaki, Y.; Ando, S. Executive function after exhaustive
exercise. Eur. J. Appl. Physiol. 2017, 117, 2029–2038. [CrossRef]

26. Komiyama, T.; Sudo, M.; Higaki, Y.; Kiyonaga, A.; Tanaka, H.; Ando, S. Does moderate hypoxia alter working
memory and executive function during prolonged exercise? Physiol. Behav. 2015, 139, 290–296. [CrossRef]

http://dx.doi.org/10.1016/j.neuroimage.2017.03.061
http://www.ncbi.nlm.nih.gov/pubmed/28366763
http://dx.doi.org/10.3389/fpsyg.2016.00642
http://dx.doi.org/10.1111/desc.12555
http://dx.doi.org/10.1515/hukin-2017-0050
http://dx.doi.org/10.2165/00007256-200232090-00002
http://dx.doi.org/10.1016/j.nlm.2006.11.003
http://dx.doi.org/10.1249/mss.0b013e31802f04c7
http://dx.doi.org/10.1016/j.psyneuen.2013.12.014
http://dx.doi.org/10.3389/fnbeh.2014.00262
http://dx.doi.org/10.3357/AMHP.4830.2017
http://dx.doi.org/10.3389/fphys.2018.00060
http://dx.doi.org/10.23736/S0022-4707.16.06549-X
http://dx.doi.org/10.1111/obr.12034
http://dx.doi.org/10.3389/fphys.2016.00224
http://dx.doi.org/10.1007/s11325-013-0922-4
http://dx.doi.org/10.3389/fphys.2015.00414
http://dx.doi.org/10.1016/j.neubiorev.2017.01.019
http://dx.doi.org/10.1016/j.physbeh.2016.07.003
http://dx.doi.org/10.1089/ham.2015.0027
http://dx.doi.org/10.1007/s00421-017-3692-z
http://dx.doi.org/10.1016/j.physbeh.2014.11.057


Int. J. Environ. Res. Public Health 2019, 16, 1003 10 of 11

27. Ando, S.; Yamada, Y.; Kokubu, M. Reaction time to peripheral visual stimuli during exercise under hypoxia.
J. Appl. Physiol. 2010, 108, 1210–1216. [CrossRef]

28. Nakata, H.; Miyamoto, T.; Ogoh, S.; Kakigi, R.; Shibasaki, M. Effects of acute hypoxia on human cognitive
processing: A study using ERPs and SEPs. J. Appl. Physiol. 2017, 123, 1246–1255. [CrossRef]

29. Logan, G.D. Executive control of thought and action. Acta Psychol. 1985, 60, 193–210. [CrossRef]
30. Reason, J. Human Error; Cambridge University Press: Cambridge, UK, 1990.
31. Wager, T.D.; Sylvester, C.Y.C.; Lacey, S.C.; Nee, D.E.; Franklin, M.; Jonides, J. Common and unique

components of response inhibition revealed by fMRI. Neuroimage 2005, 27, 323–340. [CrossRef]
32. Harada, T.; Okagawa, S.; Kubota, K. Jogging improved performance of a behavioral branching task:

Implications for prefrontal activation. Neurosci. Res. 2004, 49, 325–337. [CrossRef]
33. Menon, V.; Adleman, N.E.; White, C.D.; Glover, G.H.; Reiss, A.L. Error-related brain activation during a

Go/NoGo response inhibition task. Hum. Brain Mapp. 2001, 12, 131–143. [CrossRef]
34. Donders, F.C. On the speed of mental processes. Acta Psychol. 1969, 30, 412–431. [CrossRef]
35. Konishi, S.; Nakajima, K.; Uchida, I.; Sekihara, K.; Miyashita, Y. No-go dominant brain activity in human

inferior prefrontal cortex revealed by functional magnetic resonance imaging. Eur. J. Neurosci. 1998, 10,
1209–1213. [CrossRef]

36. Kim, C.H.; Ryan, E.J.; Seo, Y.; Peacock, C.; Gunstad, J.; Muller, M.D.; Ridgel, A.L.; Glickman, E.L. Low
intensity exercise does not impact cognitive function during exposure to normobaric hypoxia. Physiol. Behav.
2015, 151, 24–28. [CrossRef]

37. Loprinzi, P.; Frith, E. The role of sex in memory function: Considerations and recommendations in the
context of exercise. J. Clin. Med. 2018, 7, 132. [CrossRef]

38. Levental, S.; Picard, E.; Mimouni, F.; Joseph, L.; Samuel, T.Y.; Bromiker, R.; Mandel, D.; Arish, N.; Goldberg, S.
Sex-linked difference in blood oxygen saturation. Clin. Respir. J. 2018, 12, 1900–1904. [CrossRef]

39. Sundström Poromaa, I.; Gingnell, M. Menstrual cycle influence on cognitive function and emotion
processing-from a reproductive perspective. Front. Neurosci. 2014, 8, 380.

40. Krejza, J.; Siemkowicz, J.; Sawicka, M.; Szylak, A.; Kochanowicz, J.; Mariak, Z.; Lewko, J.; Spektor, V.;
Babikian, V.; Bert, R. Oscillations of cerebrovascular resistance throughout the menstrual cycle in healthy
women. Ultrasound Obstet. Gynecol. 2003, 22, 627–632. [CrossRef]

41. Peltonen, G.L.; Harrell, J.W.; Aleckson, B.P.; LaPlante, K.M.; Crain, M.K.; Schrage, W.G. Cerebral blood flow
regulation in women across menstrual phase: Differential contribution of cyclooxygenase to basal, hypoxic,
and hypercapnic vascular tone. Am. J. Physiol. -Regul. Integr. Comp. Physiol. 2015, 311, R222–R231. [CrossRef]
[PubMed]

42. Ospina, J.A.; Krause, D.N.; Duckles, S.P. 17β-Estradiol increases rat cerebrovascular prostacyclin synthesis
by elevating cyclooxygenase-1 and prostacyclin synthase. Stroke 2002, 33, 600–605. [CrossRef] [PubMed]

43. Ospina, J.A.; Duckles, S.P.; Krause, D.N. 17β-Estradiol decreases vascular tone in cerebral arteries by
shifting COX-dependent vasoconstriction to vasodilation. Am. J. Physiol. -Heart Circ. Physiology. 2003, 285,
H241–H250. [CrossRef] [PubMed]

44. Sobrino, A.; Oviedo, P.J.; Novella, S.; Laguna-Fernandez, A.; Bueno, C.; Garcia-Perez, M.A.; Tarín, J.J.;
Cano, A.; Hermenegildo, C. Estradiol selectively stimulates endothelial prostacyclin production through
estrogen receptor-a. J. Mol. Endocrinol. 2010, 44, 237–246. [CrossRef]

45. Heyer, A.; Hasselblatt, M.; von Ahsen, N.; Häfner, H.; Sirén, A.L.; Ehrenreich, H. In vitro gender differences
in neuronal survival on hypoxia and in 17β-estradiol-mediated neuroprotection. J. Cereb. Blood Flow Metab.
2005, 25, 427–430. [CrossRef] [PubMed]

46. Mage, D.T.; Donner, M. Female resistance to hypoxia: Does it explain the sex difference in mortality rates?
J. Women’s Health 2006, 15, 786–794. [CrossRef]

47. Gordon, H.W.; Lee, P.A. No difference in cognitive performance between phases of the menstrual cycle.
Psychoneuroendocrinology 1993, 18, 521–531. [CrossRef]

48. Phillips, S.M. Variations in memory function and sex steroid hormones across the menstrual cycle.
Psychoneuroendocrinology 1992, 7, 497–506. [CrossRef]

49. Verges, S.; Rupp, T.; Jubeau, M.; Wuyam, B.; Esteve, F.; Levy, P.; Perrey, S.; Millet, G.Y. Cerebral perturbations
during exercise in hypoxia. Ajp-Regul. Integr. Comp. Physiol. 2012, 302, R903–R916. [CrossRef]

50. Virués-Ortega, J.; Buela-Casal, G.; Garrido, E.; Alcázar, B. Neuropsychological functioning associated with
high-altitude exposure. Neuropsychol. Rev. 2004, 14, 197–224. [CrossRef]

http://dx.doi.org/10.1152/japplphysiol.01115.2009
http://dx.doi.org/10.1152/japplphysiol.00348.2017
http://dx.doi.org/10.1016/0001-6918(85)90055-1
http://dx.doi.org/10.1016/j.neuroimage.2005.01.054
http://dx.doi.org/10.1016/j.neures.2004.03.011
http://dx.doi.org/10.1002/1097-0193(200103)12:3&lt;131::AID-HBM1010&gt;3.0.CO;2-C
http://dx.doi.org/10.1016/0001-6918(69)90065-1
http://dx.doi.org/10.1046/j.1460-9568.1998.00167.x
http://dx.doi.org/10.1016/j.physbeh.2015.07.003
http://dx.doi.org/10.3390/jcm7060132
http://dx.doi.org/10.1111/crj.12753
http://dx.doi.org/10.1002/uog.907
http://dx.doi.org/10.1152/ajpregu.00106.2016
http://www.ncbi.nlm.nih.gov/pubmed/27225949
http://dx.doi.org/10.1161/hs0202.102732
http://www.ncbi.nlm.nih.gov/pubmed/11823676
http://dx.doi.org/10.1152/ajpheart.00018.2003
http://www.ncbi.nlm.nih.gov/pubmed/12637362
http://dx.doi.org/10.1677/JME-09-0112
http://dx.doi.org/10.1038/sj.jcbfm.9600056
http://www.ncbi.nlm.nih.gov/pubmed/15689954
http://dx.doi.org/10.1089/jwh.2006.15.786
http://dx.doi.org/10.1016/0306-4530(93)90045-M
http://dx.doi.org/10.1016/0306-4530(92)90008-U
http://dx.doi.org/10.1152/ajpregu.00555.2011
http://dx.doi.org/10.1007/s11065-004-8159-4


Int. J. Environ. Res. Public Health 2019, 16, 1003 11 of 11

51. Turner, C.E.; Barker-Collo, S.L.; Connell, C.J.; Gant, N. Acute hypoxic gas breathing severely impairs
cognition and task learning in humans. Physiol. Behav. 2015, 142, 104–110. [CrossRef]

52. de Aquino Lemos, V.; Antunes, H.K.M.; dos Santos, R.V.T.; Lira, F.S.; Tufik, S.; de Mello, M.T. High
altitude exposure impairs sleep patterns, mood, and cognitive functions. Psychophysiology 2012, 49, 1298–1306.
[CrossRef]

53. Thiel, C.; Vogt, L.; Tesky, V.A.; Meroth, L.; Jakob, M.; Sahlender, S.; Pantel, J.; Banzer, W. Cognitive intervention
response is related to habitual physical activity in older adults. Aging Clin. Exp. Res. 2012, 24, 47–55.

54. Kuipers, H.; Verstappen, F.T.J.; Keizer, H.A.; Geurten, P.; Van Kranenburg, G. Variability of aerobic
performance in the laboratory and its physiologic correlates. Int. J. Sports Med. 1985, 6, 197–201. [CrossRef]

55. Seifi, S.; Khatony, A.; Moradi, G.; Abdi, A.; Najafi, F. Accuracy of pulse oximetry in detection of oxygen
saturation in patients admitted to the intensive care unit of heart surgery: Comparison of finger, toe, forehead
and earlobe probes. Bmc Nurs. 2018, 17, 15. [CrossRef]

56. Curtelin, D.; Morales-Alamo, D.; Torres-Peralta, R.; Rasmussen, P.; Martin-Rincon, M.; Perez-Valera, M.;
Siebenmann, C.; Perez-Suarez, I.; Cherouveim, E.; Sheel, A.W.; et al. Cerebral blood flow, frontal lobe
oxygenation and intra-arterial blood pressure during sprint exercise in normoxia and severe acute hypoxia in
humans. J. Cereb. Blood Flow Metab. 2017. [CrossRef]

57. Rasmussen, P.; Nielsen, J.; Overgaard, M.; Krogh-Madsen, R.; Gjedde, A.; Secher, N.H.; Petersen, N.C.
Reduced muscle activation during exercise related to brain oxygenation and metabolism in humans. J. Physiol.
2010, 588, 1985–1995. [CrossRef]

58. Duncan, S.J.; Schofield, G.; Duncan, E.K.; Hinckson, E.A. Effects of age, walking speed, and body composition
on pedometer accuracy in children. Res. Q. Exerc. Sport 2007, 78, 420–428. [CrossRef]

59. Kong, Z.; Sun, S.; Liu, M.; Shi, Q. Short-term high-intensity interval training on body composition and blood
glucose in overweight and obese young women. J. Diabetes Res. 2016, 2016. [CrossRef]

60. Cohen, J. Statistical Power Analysis for the Social Sciences. 1988. Available online: http://www.utstat.
toronto.edu/~{}brunner/oldclass/378f16/readings/CohenPower.pdf (accessed on 19 March 2019).

61. Hampson, E. Variations in sex-related cognitive abilities across the menstrual cycle. Brain Cogn. 1990, 14,
26–43. [CrossRef]

62. Moore, L.G.; Niermeyer, S.; Zamudio, S. Human adaptation to high altitude: Regional and life-cycle
perspectives. Am. J. Phys. Anthropol. 1998, 107, 25–64. [CrossRef]

63. Rodriguez, G.; Warkentin, S.; Risberg, J.; Rosadini, G. Sex differences in regional cerebral blood flow. J. Cereb.
Blood Flow Metab. 1988, 8, 783–789. [CrossRef] [PubMed]

64. Esposito, G.; Van Horn, J.D.; Weinberger, D.R.; Berman, K.F. Gender differences in cerebral blood flow as a
function of cognitive state with PET. J. Nucl. Med. 1996, 37, 559–564. [PubMed]

65. Peltonen, G.L.; Harrell, J.W.; Rousseau, C.L.; Ernst, B.S.; Marino, M.L.; Crain, M.K.; Schrage, W.G.
Cerebrovascular regulation in men and women: Stimulus-specific role of cyclooxygenase. Physiol. Rep. 2015,
3, e12451. [CrossRef]

66. Smith, M.; Tallis, J.; Miller, A.; Clarke, N.D.; Guimaraes-Ferreira, L.; Duncan, M.J. The effect of exercise
intensity on cognitive performance during short duration treadmill running. J. Hum. Kinet. 2016, 51, 27–35.
[CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.physbeh.2015.02.006
http://dx.doi.org/10.1111/j.1469-8986.2012.01411.x
http://dx.doi.org/10.1055/s-2008-1025839
http://dx.doi.org/10.1186/s12912-018-0283-1
http://dx.doi.org/10.1177/0271678X17691986
http://dx.doi.org/10.1113/jphysiol.2009.186767
http://dx.doi.org/10.1080/02701367.2007.10599442
http://dx.doi.org/10.1155/2016/4073618
http://www.utstat.toronto.edu/~{}brunner/oldclass/378f16/readings/CohenPower.pdf
http://www.utstat.toronto.edu/~{}brunner/oldclass/378f16/readings/CohenPower.pdf
http://dx.doi.org/10.1016/0278-2626(90)90058-V
http://dx.doi.org/10.1002/(SICI)1096-8644(1998)107:27+&lt;25::AID-AJPA3&gt;3.0.CO;2-L
http://dx.doi.org/10.1038/jcbfm.1988.133
http://www.ncbi.nlm.nih.gov/pubmed/3192645
http://www.ncbi.nlm.nih.gov/pubmed/8691239
http://dx.doi.org/10.14814/phy2.12451
http://dx.doi.org/10.1515/hukin-2015-0167
http://www.ncbi.nlm.nih.gov/pubmed/28149365
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Severe hypoxia does not offset the benefits of exercise on cognitive function in sedentary young women
	Recommended Citation
	Authors

	Introduction 
	Methods 
	Study Participants 
	Preliminary Testing and Familiarization 
	Experimental Procedure 
	The Interference Control Task 
	Physical Activity and Dietary Assessments 
	Statistical Analysis 

	Results 
	Habitual Physical Activity and Dietary Profile 
	Physiological Parameters 
	Cognitive Function 

	Discussion 
	Cognitive Function at Rest Under Hypoxia 
	Cognitive Function During Exercise Under Hypoxia 
	Strengths and Limitations 

	Conclusions 
	References

