41 research outputs found
China's Bovine Meat Import Surge and Its Drivers: The Mixed Gravity and Import Demand Model Approach
Interactive effects of strontium and barium water concentration on otolith incorporation in juvenile flounder Paralichthys olivaceus.
Although the relationship between the incorporation of an element into otoliths and the concentration of the element in water has been extensively investigated in many fish species, the interactive effects of multiple elements in water on the otolith incorporation of an element are not adequately explored or well understood. In this study, 16 treatments in triplicate using strontium (Sr; 1, 2, 3 and 4 times the ambient baseline, 6.5 mg l-1) and barium (Ba; 1, 2, 4 and 6 times the ambient baseline, 40 μg l-1) as categorical variables in an orthogonal design were established to evaluate the relative or interactive effects of water elements on otolith elemental incorporation in juvenile flounder Paralichthys olivaceus (from 15 to 116 days post hatching). The results revealed that otolith incorporation (Me:CaOtolith) of Sr and Ba were positively dependent on the concentrations of the elements in water (Me:CaWater). Overall, Sr was incorporated into otoliths more efficiently than was Ba, and the partition efficiency (DMe) of both elements decreased with increasing water elemental concentrations. Increasing Sr concentrations in water appeared to negatively affect the uptake of Ba into otoliths rather than facilitate it, as previously reported in fish reared in freshwater and brackish water, or showed no effect on fish in seawater. Conversely, the Ba concentration in water did not influence the otolith uptake of Sr, which agrees with the findings for other fish species. When applying otolith microchemistry to fish ecology studies, it is essential to cautiously address the interactive effects of multiple elements in the environment on otolith elemental incorporation
Application of Curcumin Emulsion Carrier from Ultrasonic-Assisted Prepared Octenyl Succinic Anhydride Rice Starch
The emulsification of ultrasonic-assisted prepared octenyl succinic anhydride (OSA) rice starch on curcumin was investigated in the present study. The results indicated that the encapsulation efficiency of curcumin in emulsions stabilized by OSA-ultrasonic treatment rice starch was improved, from 81.65 ± 0.14% to 89.03 ± 0.09%. During the in vitro oral digestion, the particle size and Zeta potential of the curcumin emulsion did not change significantly (p > 0.05). During the in vitro digestive stage of the stomach and small intestine, the particle size of the curcumin emulsion continued to increase, and the absolute potential continued to decrease. Our work showed that OSA-pre-treatment ultrasonic rice starch could improve curcumin bioavailability by increasing the encapsulation efficiency with stronger stability to avoid the attack of enzymes and high intensity ion, providing a way to develop new emulsion-based delivery systems for bioactive lipophilic compounds using OSA starch
Phytochemicals and Antioxidant Capacities of Young Citrus Fruits Cultivated in China
Fruits of six varieties of young citrus cultivated in China were collected for phytochemical composition analysis and antioxidant activity determination. The phenolic acids, synephrine, flavone, and flavanone were analyzed using HPLC, and the total phenolic content and antioxidant capacity were determined by Folin-Ciocalteu, Ferric ion reducing antioxidant power (FRAP), 2,2- 1,1-diphenyl-2-picrylhydrazyl (DPPH), and 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) analysis. The results indicated that Ougan variety had the highest total phenolic content (125.18 GAE mg/g DW), followed by the Huyou variety (107.33 mg/g DW), while Wanshuwenzhoumigan variety had the lowest (35.91 mg/g DW). Ferulic acid was the most dominant soluble phenolic acid in the selected young citrus, followed by p-coumaric acid and p-hydroxybenzoic acid, whereas nobiletin and tangeretin were the most abundant flavones in the Ponkan, Ougan, and Wanshuwenzhoumigan varieties. Antioxidant capacity that measured by ABTS, FRAP, and DPPH showed similar trends and was positively correlated with the total phenolic and total flavonoid contents (p < 0.05). Considering the high content of phenolics in the young fruits of Ougan and Huyou variety, those two varieties might be potential resources for extracting phytochemicals for health promotion
Pectin from <i>Citrus unshiu</i> Marc. Alleviates Glucose and Lipid Metabolism by Regulating the Gut Microbiota and Metabolites
The effects of pectin from Citrus unshiu Marc. on glycolipid metabolism, the morphologies of the pancreas and epididymal fat, the gut microbiota, and the metabolites of short-chain fatty acids (SCFAs) in db/db mice were investigated in this study. The results indicated that pectin reduced the levels of fasting blood glucose, glycated serum protein, triglycerides, total cholesterol, and low-density lipoprotein cholesterol while increasing the levels of high-density lipoprotein cholesterol. Meanwhile, pectin could improve the morphology of islet cells and inhibit the hypertrophy of adipocytes. Additionally, pectin not only regulated the intestinal flora dysbiosis in db/db mice, as shown by the increasing proportion of Firmicutes/Bacteroidetes and the relative abundance of Ligilactobacillus, Lactobacillus, and Limosilactobacillus, but also remedied the metabolic disorder of SCFAs in db/db mice. These results suggest that pectin could promote glucose and lipid metabolism by regulating the intestinal flora with changes in SCFA profile. This study proves that pectin might serve as a new prebiotic agent to prevent the disorder of glycolipid metabolism
Domestic cooking methods affect nutrient, phytochemicals, and flavor content in mushroom soup
The effects of different cooking methods, including autoclaving, microwaving, sous vide, and stewing, on the nutritional quality of mushroom (Hypsizygus marmoreus) soup were investigated. The results showed that all four cooking methods increased the polysaccharide, polyphenol, and amino acid levels compared to uncooked soup. Stewing increased protein content with the other cooking methods showing no change when compared with uncooked soup. Sous vide increased nucleotide content with the other methods decreasing nucleotide levels, and this method was also the best for increasing polyphenol and flavor compounds. Autoclaving generated the highest levels of polysaccharides. In summary, each method had a characteristic effect on mushroom soup properties, and cooking improved the nutritional value of mushrooms by the increase in releasing macro‐ and micronutrients
Domestic cooking methods affect nutrient, phytochemicals, and flavor content in mushroom soup
The effects of different cooking methods, including autoclaving, microwaving, sous vide, and stewing, on the nutritional quality of mushroom (Hypsizygus marmoreus) soup were investigated. The results showed that all four cooking methods increased the polysaccharide, polyphenol, and amino acid levels compared to uncooked soup. Stewing increased protein content with the other cooking methods showing no change when compared with uncooked soup. Sous vide increased nucleotide content with the other methods decreasing nucleotide levels, and this method was also the best for increasing polyphenol and flavor compounds. Autoclaving generated the highest levels of polysaccharides. In summary, each method had a characteristic effect on mushroom soup properties, and cooking improved the nutritional value of mushrooms by the increase in releasing macro‐ and micronutrients
Preparation of Neohesperidin–Taro Starch Complex as a Novel Approach to Modulate the Physicochemical Properties, Structure and In Vitro Digestibility
Neohesperidin (NH), a natural flavonoid, exerts multiple actions, such as antioxidant, antiviral, antiallergic, vasoprotective, anticarcinogenic and anti-inflammatory effects, as well as inhibition of tumor progression. In this study, the NH–taro starch complex is prepared, and the effects of NH complexation on the physicochemical properties, structure and in vitro digestibility of taro starch (TS) are investigated. Results showed that NH complexation significantly affected starch gelatinization temperatures and reduced its enthalpy value (ΔH). The addition of NH increased the viscosity and thickening of taro starch, facilitating shearing and thinning. NH binds to TS via hydrogen bonds and promotes the formation of certain crystalline regions in taro starch. SEM images revealed that the surface of NH–TS complexes became looser with the increasing addition of NH. The digestibility results demonstrated that the increase in NH (from 0.1% to 1.1%, weight based on starch) could raise RS (resistant starch) from 21.66% to 27.75% and reduce RDS (rapidly digestible starch) from 33.51% to 26.76% in taro starch. Our work provided a theoretical reference for the NH–taro starch complex’s modification of physicochemical properties and in vitro digestibility with potential in food and non-food applications