14 research outputs found

    GW25-e1427 The impact of cardiac rehabilitation on the risk factors of percutaneous coronary intervention

    Get PDF

    ISTD-PDS7: A Benchmark Dataset for Multi-Type Pavement Distress Segmentation from CCD Images in Complex Scenarios

    No full text
    The lack of large-scale, multi-scene, and multi-type pavement distress training data reduces the generalization ability of deep learning models in complex scenes, and limits the development of pavement distress extraction algorithms. Thus, we built the first large-scale dichotomous image segmentation (DIS) dataset for multi-type pavement distress segmentation, called ISTD-PDS7, aimed to segment highly accurate pavement distress types from natural charge-coupled device (CCD) images. The new dataset covers seven types of pavement distress in nine types of scenarios, along with negative samples with texture similarity noise. The final dataset contains 18,527 images, which is many more than the previously released benchmarks. All the images are annotated with fine-grained labels. In addition, we conducted a large benchmark test, evaluating seven state-of-the-art segmentation models, providing a detailed discussion of the factors that influence segmentation performance, and making cross-dataset evaluations for the best-performing model. Finally, we investigated the effectiveness of negative samples in reducing false positive prediction in complex scenes and developed two potential data augmentation methods for improving the segmentation accuracy. We hope that these efforts will create promising developments for both academics and the industry

    Emerging Strategies for Enhancing Propionate Conversion in Anaerobic Digestion: A Review

    No full text
    Anaerobic digestion (AD) is a triple-benefit biotechnology for organic waste treatment, renewable production, and carbon emission reduction. In the process of anaerobic digestion, pH, temperature, organic load, ammonia nitrogen, VFAs, and other factors affect fermentation efficiency and stability. The balance between the generation and consumption of volatile fatty acids (VFAs) in the anaerobic digestion process is the key to stable AD operation. However, the accumulation of VFAs frequently occurs, especially propionate, because its oxidation has the highest Gibbs free energy when compared to other VFAs. In order to solve this problem, some strategies, including buffering addition, suspension of feeding, decreased organic loading rate, and so on, have been proposed. Emerging methods, such as bioaugmentation, supplementary trace elements, the addition of electronic receptors, conductive materials, and the degasification of dissolved hydrogen, have been recently researched, presenting promising results. But the efficacy of these methods still requires further studies and tests regarding full-scale application. The main objective of this paper is to provide a comprehensive review of the mechanisms of propionate generation, the metabolic pathways and the influencing factors during the AD process, and the recent literature regarding the experimental research related to the efficacy of various strategies for enhancing propionate biodegradation. In addition, the issues that must be addressed in the future and the focus of future research are identified, and the potential directions for future development are predicted

    Complete Hydrodesulfurization of Dibenzothiophene via Direct Desulfurization Pathway over Mesoporous TiO<sub>2</sub>-Supported NiMo Catalyst Incorporated with Potassium

    No full text
    Mesoporous TiO2 containing different potassium content was prepared from potassium titanate by mediating the pH value of the ion exchange, which was used as catalytic support to load NiMo for hydrodesulfurization of dibenzothiophene. The as-prepared samples were characterized by X-ray diffraction, N2 physical adsorption/desorption, temperature-programmed reduction, scanning electron microscope/energy dispersive X-ray mapping analysis, high resolution transmission electron microscopy, and pyridine-adsorbed Fourier transform infrared spectroscopy. The characterization results showed that NiO and MoO3 were well dispersed on mesoporous TiO2 with varying potassium content. A crystal NiMoO4 phase was formed on the TiO2 with relatively high potassium content, which could decrease the reduction temperature of oxidized active species. The evaluation results from the hydrodesulfurization displayed that as the potassium content of the catalyst increased, the dibenzothiophene conversion firstly increased and then slightly decreased when potassium content exceeded 6.41 wt %. By contrast, the direct desulfurization selectivity could continuously increase along with the potassium content of catalyst. Furthermore, the change in direct desulfurization selectivity of a TiO2-supported NiMo catalyst was independent of the reaction condition. The mesoporous TiO2-supported NiMo catalyst incorporated with potassium could have near both 100% of dibenzothiophene and 100% of direct desulfurization selectivity. According to the structure&#8211;performance relationship discussion, the incorporation of potassium species could benefit the formation of more sulfided active species on mesoporous TiO2. Moreover, excessive free potassium species may poison the active sites of the hydrogenation pathway. Both factors determined the characteristics of complete hydrodesulfurization of dibenzothiophene via a direct desulfurization pathway for potassium-incorporated mesoporous TiO2 supported NiMo catalysts

    A Ferricyanide Anion-Philic Interface Induced by Boron Species within Carbon Framework for Efficient Charge Storage in Supercapacitors

    No full text
    Carbon materials with hierarchical porous structures hold great potential for redox electrolyte-enhanced supercapacitors. However, restricted by the intrinsic inert and nonpolar characteristics of carbon, the energy barrier of anchoring redox electrolytes on the pore walls is relatively high. As such, the redox process at the interface less occurs, and the rate of mass transfer is impaired, further leading to a poor electrochemical performance. Here, a ferricyanide anion-philic interface made of in situ inserted boron species into carbon rings is constructed for enhanced charge storage in supercapacitors. Profiting from the unique component-driven effects, the polar anchoring sites on the pore wall can be built to grasp the charged redox ferricyanide anion from the bulk electrolyte and promote the redox process; the dynamics process is fastened correspondingly. Especially, the boron atoms in BC2O and BCO2 units with higher positive natural bond orbital values in the carbon skeleton are pinpointed as intrinsic active sites to bind the negatively charged nitrogen atoms in the ferricyanide anion via electrostatic interaction, confirmed by density functional theoretical calculations. This will suppress the shuttle and diffusion effects of the ferricyanide anion from the surface of the electrode to the bulk electrolyte. Finally, the well-designed PC-3 with high content of BC2O and BCO2 units can reach 1099 F g–1 at 2 mV s–1, which is a more than 2-fold increase over boron-free units of carbon (428 F g–1). The work offers a novel version for designing high-performance carbon materials with unique yet reaction species-philic effects
    corecore