1,319 research outputs found

    Stereo Computation for a Single Mixture Image

    Full text link
    This paper proposes an original problem of \emph{stereo computation from a single mixture image}-- a challenging problem that had not been researched before. The goal is to separate (\ie, unmix) a single mixture image into two constitute image layers, such that the two layers form a left-right stereo image pair, from which a valid disparity map can be recovered. This is a severely illposed problem, from one input image one effectively aims to recover three (\ie, left image, right image and a disparity map). In this work we give a novel deep-learning based solution, by jointly solving the two subtasks of image layer separation as well as stereo matching. Training our deep net is a simple task, as it does not need to have disparity maps. Extensive experiments demonstrate the efficacy of our method.Comment: Accepted by European Conference on Computer Vision (ECCV) 201

    Dust charging processes in the nonequilibrium dusty plasma with nonextensive power-law distribution

    Full text link
    The dust charging processes in the collections of electrons and ions in the nonequilibrium dusty plasma with power-law distributions are investigated on the basic of a new q-distribution function theory in nonextensive statistics. Electrons and ions obey the power-law distributions and are with q-parameters different from each other. We derive the generalized formulae for the dust charging currents in which the nonextensive effects play roles. Further we investigate the dust charging processes taking place in the homogeneous dusty plasma where only the particle velocities are power-law distributions and in the dust cloud plasma where the particle velocities and densities are both power-law distributions. By numerical analyses, we show that the nonextensive power-law distributions of electrons and ions have significant effects on the dust charging processes in the nonequilibrium dusty plasma.Comment: 16 pages, 6 figures, 51 reference

    Deep Clustering: A Comprehensive Survey

    Full text link
    Cluster analysis plays an indispensable role in machine learning and data mining. Learning a good data representation is crucial for clustering algorithms. Recently, deep clustering, which can learn clustering-friendly representations using deep neural networks, has been broadly applied in a wide range of clustering tasks. Existing surveys for deep clustering mainly focus on the single-view fields and the network architectures, ignoring the complex application scenarios of clustering. To address this issue, in this paper we provide a comprehensive survey for deep clustering in views of data sources. With different data sources and initial conditions, we systematically distinguish the clustering methods in terms of methodology, prior knowledge, and architecture. Concretely, deep clustering methods are introduced according to four categories, i.e., traditional single-view deep clustering, semi-supervised deep clustering, deep multi-view clustering, and deep transfer clustering. Finally, we discuss the open challenges and potential future opportunities in different fields of deep clustering

    Triacylglycerol synthesis by PDAT1 in the absence of DGAT1 activity is dependent on re-acylation of LPC by LPCAT2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Arabidopsis thaliana dgat1 </it>mutant, <it>AS11</it>, has an oil content which is decreased by 30%, and a strongly increased ratio of 18:3/20:1, compared to wild type. Despite lacking a functional DGAT1, <it>AS11 </it>still manages to make 70% of WT seed oil levels. Recently, it was demonstrated that in the absence of <it>DGAT1</it>, <it>PDAT1 </it>was essential for normal seed development, and is a dominant determinant in <it>Arabidopsis </it>TAG biosynthesis.</p> <p>Methods</p> <p>Biochemical, metabolic and gene expression studies combined with genetic crossing of selected <it>Arabidopsis </it>mutants have been carried out to demonstrate the contribution of <it>Arabidopsis </it>PDAT1 and LPCAT2 in the absence of DGAT1 activity.</p> <p>Results</p> <p>Through microarray and RT-PCR gene expression analyses of <it>AS11 </it>vs. WT mid-developing siliques, we observed consistent trends between the two methods. <it>FAD2 </it>and <it>FAD3 </it>were up-regulated and <it>FAE1 </it>down-regulated, consistent with the <it>AS11 </it>acyl phenotype. <it>PDAT1 </it>expression was up-regulated by <it>ca </it>65% while <it>PDAT2 </it>expression was up-regulated only 15%, reinforcing the dominant role of <it>PDAT1 </it>in <it>AS11 </it>TAG biosynthesis. The expression of <it>LPCAT2 </it>was up-regulated by 50-75%, while <it>LPCAT1 </it>expression was not significantly affected. <it>In vitro </it>LPCAT activity was enhanced by 75-125% in microsomal protein preparations from mid-developing <it>AS11 </it>seed <it>vs </it>WT. Co-incident homozygous knockout lines of <it>dgat1</it>/<it>lpcat2 </it>exhibited severe penalties on TAG biosynthesis, delayed plant development and seed set, even with a functional PDAT1; the double mutant <it>dgat1/lpcat1 </it>showed only marginally lower oil content than <it>AS11</it>.</p> <p>Conclusions</p> <p>Collectively, the data strongly support that in <it>AS11 </it>it is <it>LPCAT2 </it>up-regulation which is primarily responsible for assisting in PDAT1-catalyzed TAG biosynthesis, maintaining a supply of PC as co-substrate to transfer <it>sn</it>-2 moieties to the <it>sn</it>-3 position of the enlarged <it>AS11 </it>DAG pool.</p

    Active compensation of extrinsic polarization errors using adaptive optics

    Full text link
    We present a scheme for active compensation of complex extrinsic polarization perturbations introduced into an optical system. Imaging polarimeter is used to measure the polarization state across a beam profile and a liquid crystal spatial light modulator controls the polarization of the input beam. A sequence of measurements permits determination of the birefringence properties of a perturbing specimen. The necessary correction is calculated and fed back to the polarization modulator to compensate for the polarization perturbation. The system capabilities are demonstrated on a range of birefringent specimens

    CERKL regulates autophagy via the NAD-dependent deacetylase SIRT1

    Get PDF
    <p>Macroautophagy/autophagy is an important intracellular mechanism for the maintenance of cellular homeostasis. Here we show that the <i>CERKL</i> (ceramide kinase like) gene, a retinal degeneration (RD) pathogenic gene, plays a critical role in regulating autophagy by stabilizing SIRT1. <i>In vitro</i> and <i>in vivo</i>, suppressing CERKL results in impaired autophagy. SIRT1 is one of the main regulators of acetylation/deacetylation in autophagy. In CERKL-depleted retinas and cells, SIRT1 is downregulated. ATG5 and ATG7, 2 essential components of autophagy, show a higher degree of acetylation in CERKL-depleted cells. Overexpression of SIRT1 rescues autophagy in CERKL-depleted cells, whereas CERKL loses its function of regulating autophagy in SIRT1-depleted cells, and overexpression of CERKL upregulates SIRT1. Finally, we show that CERKL directly interacts with SIRT1, and may regulate its phosphorylation at Ser27 to stabilize SIRT1. These results show that CERKL is an important regulator of autophagy and it plays this role by stabilizing the deacetylase SIRT1.</p

    Suppressing Methods of the Pressure Fluctuation in Open Jet Wind Tunnels

    Get PDF
    Due to the distinctive structure of the test section, the open jet wind tunnel generates low-frequency pressure fluctuations (LFFs) within the range of typical wind speeds. These fluctuations significantly compromise the quality of the flow field in the test section. The evolution of the flow structure and vortex is analysed through the improved delayed detached eddy simulations (IDDES). The LFFs and the control mechanism in the open jet wind tunnel of Jilin University are then studied. The interaction between the large-scale vortex shedding at the nozzle exit and the collector forms the edge feedback, which is the main reason for the pressure fluctuation. According to the feedback mechanism, the LFFs are suppressed using the throat gap and by improving the collector shapes. The results show that the increase of the throat gap length at the collector can significantly alleviate the pressure accumulation inside the collector. The change of the collector shapes can control the impact area and time of the incoming flow, or produce permanent vortex structure to affect the impact shape of the vortex and the flow field at the collector, which allows to control the LFFs. This study lays a solid foundation for further comprehension of the aerodynamic characteristics of the open jet wind tunnels

    Dispersive readout of reconfigurable ambipolar quantum dots in a silicon-on-insulator nanowire

    Get PDF
    We report on ambipolar gate-defined quantum dots in silicon on insulator (SOI) nanowires fabricated using a customised complementary metal-oxide-semiconductor (CMOS) process. The ambipolarity was achieved by extending a gate over an intrinsic silicon channel to both highly doped n-type and p-type terminals. We utilise the ability to supply ambipolar carrier reservoirs to the silicon channel to demonstrate an ability to reconfigurably define, with the same electrodes, double quantum dots with either holes or electrons. We use gate-based reflectometry to sense the inter-dot charge transition(IDT) of both electron and hole double quantum dots, achieving a minimum integration time of 160(100) μ\mus for electrons (holes). Our results present the opportunity to combine, in a single device, the long coherence times of electron spins with the electrically controllable holes spins in silicon.Comment: 5 pages, 4 figure
    corecore