25 research outputs found

    A neutralizing monoclonal antibody-based competitive ELISA for classical swine fever C-strain post–vaccination monitoring

    Get PDF
    Background: Virus neutralization test (VNT) is widely used for serological survey of classical swine fever (CSF) and efficacy evaluation of CSF vaccines. However, VNT is a time consuming procedure that requires cell culture and live virus manipulation. C-strain CSF vaccine is the most frequently used vaccine for CSF control and prevention. In this study, we presented a neutralizing monoclonal antibody (mAb) based competitive enzyme-linked immunosorbent assay (cELISA) with the emphasis on the replacement of VNT for C-strain post–vaccination monitoring. Results: One monoclonal antibody (6B211) which has potent neutralizing activity against C-strain was generated. A novel cELISA was established and optimized based on the strategy that 6B211 can compete with C-strain induced neutralizing antibodies in pig serum to bind capture antigen C-strain E2. By testing C-strain VNT negative pig sera (n = 445) and C-strain VNT positive pig sera (n = 70), the 6B211 based cELISA showed 100% sensitivity (95% confidence interval: 94.87 to 100%) and 100% specificity (95% confidence interval: 100 to 100%). The C-strain antibody can be tested in pigs as early as 7 days post vaccination with the cELISA. By testing pig sera (n = 139) in parallel, the cELISA showed excellent agreement (Kappa = 0.957) with VNT. The inhibition rate of serum samples in the cELISA is highly correlated with their titers in VNT (r2 = 0.903, p < 0.001). In addition, intra- and inter-assays of the cELISA exhibited acceptable repeatability with low coefficient of variations (CVs). Conclusions: This novel cELISA demonstrated excellent agreement and high level correlation with VNT. It is a reliable tool for sero-monitoring of C-strain vaccination campaign because it is a rapid, simple, safe and cost effective assay that can be used to monitor vaccination-induced immune response at the population level.info:eu-repo/semantics/publishedVersio

    The Epitope Study on the SARS-CoV Nucleocapsid Protein

    Get PDF
    The nucleocapsid protein (N protein) has been found to be an antigenic protein in a number of coronaviruses. Whether the N protein in severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is antigenic remains to be elucidated. Using Western blot and Enzyme-linked Immunosorbent Assay (ELISA), the recombinant N proteins and the synthesized peptides derived from the N protein were screened in sera from SARS patients. All patient sera in this study displayed strong positive immunoreactivities against the recombinant N proteins, whereas normal sera gave negative immunoresponses to these proteins, indicating that the N protein of SARS-CoV is an antigenic protein. Furthermore, the epitope sites in the N protein were determined by competition experiments, in which the recombinant proteins or the synthesized peptides competed against the SARS-CoV proteins to bind to the antibodies raised in SARS sera. One epitope site located at the C-terminus was confirmed as the most antigenic region in this protein. A detailed screening of peptide with ELISA demonstrated that the amino sequence from Codons 371 to 407 was the epitope site at the C-terminus of the N protein. Understanding of the epitope sites could be very significant for developing an effective diagnostic approach to SARS

    Metagenomic Sequencing From Mosquitoes in China Reveals a Variety of Insect and Human Viruses

    Get PDF
    We collected 8,700 mosquitoes in three sites in China, which belonged to seven species. Their viromes were tested using metagenomic sequencing and bioinformatic analysis. The abundant viral sequences were detected and annotated belonging to more than 50 viral taxonomic families. The results were verified by PCR, followed by phylogenetic analysis. In the present study, we identified partial viral genes of dengue virus (DENV), a novel circovirus (CCV), densovirus (DNV), Japanese encephalitis virus (JEV), and Wuhan mosquito virus (WMV) in mosquitoes. Metagenomic analysis and PCR amplification revealed three DENV sequences, which were as homologous to the NS3 gene of DENV from Singapore isolated in 2005, with at least 91% nucleotide (nt) identity. Seven fragments of JEV encoding structural proteins were identified belonging to genotype I. They all shared high homology with structural protein genes of JEV isolated from Laos in 2009. The production of infectious virus particles of the newly isolated virus YunnanJEV2017-4 increased after passage from the BHK-21 cell line to the Vero cell line. Novel circovirus-related genes were identified and as being related to an unnamed gene of a mosquito circovirus (MCCV) sequence from the USA isolated in 2011, with at least 41% nt identity: this distant relationship suggests that the parent virus might belong to a novel circovirus genus. Additionally, numerous known viruses and some unknown viruses were also detected in mosquitoes from Yunnan province, China, which will be tested for propagation

    Metagenomic Analysis of Flaviviridae in Mosquito Viromes Isolated From Yunnan Province in China Reveals Genes From Dengue and Zika Viruses

    Get PDF
    More than 6,000 mosquitoes of six species from six sites were collected and tested for their virome using metagenomics sequencing and bioinformatic analysis. The identified viral sequences belonged to more than 50 viral families. The results were verified by PCR of selected viruses in all mosquitoes, followed by phylogenetic analysis. In the present study, we identified the partial dengue virus (DENV), Zika virus (ZIKV), and Japanese encephalitis virus (JEV) sequences in mosquitoes. Metagenomic analysis and the PCR amplification revealed three DENV sequences, one of which encodes a partial envelope protein. Two ZIKV sequences both encoding partial nonstructural protein 3 and one JEV sequence encoding the complete envelope protein were identified. There was variability in the viral titers of the newly isolated virus JEV-China/YN2016-1 of different passage viruses. The newly identified Zika virus gene from ZIKV-China/YN2016-1 was an Asian genotype and shared the highest nucleotide sequence identity (97.1%) with a ZIKV sequence from Thailand isolated in 2004. Phylogenetic analysis of ZIKV-China/YN2016-1 and ZIKV-China/YN2016-2 with known Flavivirus genes indicated that ZIKV has propagated in Yunnan province, China

    The Genomes of Oryza sativa: A History of Duplications

    Get PDF
    We report improved whole-genome shotgun sequences for the genomes of indica and japonica rice, both with multimegabase contiguity, or almost 1,000-fold improvement over the drafts of 2002. Tested against a nonredundant collection of 19,079 full-length cDNAs, 97.7% of the genes are aligned, without fragmentation, to the mapped super-scaffolds of one or the other genome. We introduce a gene identification procedure for plants that does not rely on similarity to known genes to remove erroneous predictions resulting from transposable elements. Using the available EST data to adjust for residual errors in the predictions, the estimated gene count is at least 38,000–40,000. Only 2%–3% of the genes are unique to any one subspecies, comparable to the amount of sequence that might still be missing. Despite this lack of variation in gene content, there is enormous variation in the intergenic regions. At least a quarter of the two sequences could not be aligned, and where they could be aligned, single nucleotide polymorphism (SNP) rates varied from as little as 3.0 SNP/kb in the coding regions to 27.6 SNP/kb in the transposable elements. A more inclusive new approach for analyzing duplication history is introduced here. It reveals an ancient whole-genome duplication, a recent segmental duplication on Chromosomes 11 and 12, and massive ongoing individual gene duplications. We find 18 distinct pairs of duplicated segments that cover 65.7% of the genome; 17 of these pairs date back to a common time before the divergence of the grasses. More important, ongoing individual gene duplications provide a never-ending source of raw material for gene genesis and are major contributors to the differences between members of the grass family

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Optimization Control of Oilfield Waterflooding Systems Based on Different Zone and Pressure

    No full text
    The scrapping of old waterflooding wells and the increase in new waterflooding wells results in mixed flooding of high&ndash;low pressure wells in various oil layers in waterflooding systems. In order to meet production operation requirements, the whole system is in a state of high pressure, which leads to an increase in energy consumption and complicates the operation of waterflooding networks. According to the pressure distribution of wells, proceeding with regional accurate waterflooding can reduce operation costs and improve development efficiency. Considering the technical constraints of waterflooding networks, a method was proposed, which can quantitatively optimize classification and zoning for waterflooding of high&ndash;low pressure wells according to the pressure of networks and wells. At the same time, the ant colony algorithm and genetic algorithm were fused to form a new adaptive ant colony genetic hybrid algorithm, which can effectively determine the best pumping scheme of the waterflooding station, the pumping flow and optimize the low-pressure area. The K-means algorithm was used to optimize the topology of the pipe network in the high-pressure area to reduce the overall waterflooding pressure. Finally, the method was successfully applied to the large-scale waterflooding system including 2200 wells and 10 waterflooding stations in sites in China. The results show that the method is effective for the operation and reconstruction of waterflooding pipe networks with large-scale and serious mixed high&ndash;low pressure

    Optimization Control of Oilfield Waterflooding Systems Based on Different Zone and Pressure

    No full text
    The scrapping of old waterflooding wells and the increase in new waterflooding wells results in mixed flooding of high–low pressure wells in various oil layers in waterflooding systems. In order to meet production operation requirements, the whole system is in a state of high pressure, which leads to an increase in energy consumption and complicates the operation of waterflooding networks. According to the pressure distribution of wells, proceeding with regional accurate waterflooding can reduce operation costs and improve development efficiency. Considering the technical constraints of waterflooding networks, a method was proposed, which can quantitatively optimize classification and zoning for waterflooding of high–low pressure wells according to the pressure of networks and wells. At the same time, the ant colony algorithm and genetic algorithm were fused to form a new adaptive ant colony genetic hybrid algorithm, which can effectively determine the best pumping scheme of the waterflooding station, the pumping flow and optimize the low-pressure area. The K-means algorithm was used to optimize the topology of the pipe network in the high-pressure area to reduce the overall waterflooding pressure. Finally, the method was successfully applied to the large-scale waterflooding system including 2200 wells and 10 waterflooding stations in sites in China. The results show that the method is effective for the operation and reconstruction of waterflooding pipe networks with large-scale and serious mixed high–low pressure
    corecore