9 research outputs found

    Relationship between the current status of research on geological storage of solid, liquid and gas wastes in coal mines and the coordinated development of the ecological environment in China

    Get PDF
    China is a country in the world with the serious environmental pollution of coal mine “three wastes” (solid, liquid, gas). A lot of in-depth research and practice has been carried out on the utilization and treatment of “three wastes”. However, there are still many problems such as imperfect standards and norms, small scale of treatment and unsound technology. In order to solve the problem of synergistic development of low-cost geological storage of large-scale “three wastes” and ecological environment in China’s coal mines, on the basis of the definition of geological storage in other countries, the connotation of geological storage in China has been expanded. The progress and current status of research on the geological storage of “three wastes” are analyzed. Literature and patents related to the geological storage of “three wastes” at home and abroad are reviewed. The problems faced by China in carrying out the geological storage of “three wastes” and the suggestions for further development are put forward. It is pointed out that the main problem faced by the geological storage of “three wastes” in China is the inadequacy of the standards and regulations in the field of environment, especially the extensive lack of standards for the deep-well injection of waste liquids. The systematic research has shown that the research institutions in China are paying increasing attention to research in the field of the geological storage of the “three wastes”, and that the results of the research account for a high percentage of research in the world. China’s coal mine “three wastes” geological storage and ecological environment synergistic development awareness and system is being formed. However, there is insufficient support for research on the large-scale geological storage of “three wastes”, the cyclic system of geological storage of “three wastes” in the whole cycle of coal mining, and the synergistic relationship between CO2 capture, utilization and storage (CCUS) technology and the ecological environment. This seriously restricts the large-scale implementation and application of the concepts, technologies and projects of geological storage. China should expeditiously strengthen the scientific and technological research and development of coal mine “three wastes” geological storage technology and ecological environment synergistic development. Through the establishment of improved standards and norms, increased technological research and development, and strengthened environmental supervision and other measures, the green and sustainable development in China’s coal mines is promoted, helping the China’s “dual-carbon” goal to be realized

    Environmental contamination characteristics of heavy metals from abandoned lead–zinc mine tailings in China

    Get PDF
    China holds large-scale lead–zinc mineral resources; however, mining activities often cause severe contamination by heavy metals. This study systemically assessed contamination by eight heavy metals (Cu, Zn, Cd, Pb, Cr, Hg, Ni, and As) in mine tailings, soil, and groundwater from 27 contaminated sites across China. Regarding mine tailings, 1% of the mine tailing samples were hazardous waste and 20% were class II non-hazardous waste. Regarding soil, Zn and Pb showed the highest mean concentrations, at 5574.67 mg/kg and 2034.88 mg/kg, respectively. The indexes of geo-accumulation (Igeo) of eight heavy metals ranged from −3.62 to 7.67, while Zn, Pb, and Cd showed the highest environmental risk levels as the priority pollutants. The contamination levels of these heavy metals in groundwater were generally in the order of Zn>As>Pb>Ni>Cd>Cu>Hg>Cr. In this study, 20% of the soil and 10% of the groundwater samples exceeded the corresponding quality limits. The content of heavy metals in soil, groundwater, and mine tailing were positively correlated, demonstrating the main pollution source and transport paths. The pollution levels of heavy metals in soil and groundwater were listed in the foremost and moderate positions compared with similar sites from other countries, respectively. These results may help determine the pollution levels of lead–zinc mining regions and direct the remediation activities of target sites to support the environmental management of abandoned mining and tailing waste in China

    Axonal Fiber Terminations Concentrate on Gyri

    Get PDF
    Convoluted cortical folding and neuronal wiring are 2 prominent attributes of the mammalian brain. However, the macroscale intrinsic relationship between these 2 general cross-species attributes, as well as the underlying principles that sculpt the architecture of the cerebral cortex, remains unclear. Here, we show that the axonal fibers connected to gyri are significantly denser than those connected to sulci. In human, chimpanzee, and macaque brains, a dominant fraction of axonal fibers were found to be connected to the gyri. This finding has been replicated in a range of mammalian brains via diffusion tensor imaging and high–angular resolution diffusion imaging. These results may have shed some lights on fundamental mechanisms for development and organization of the cerebral cortex, suggesting that axonal pushing is a mechanism of cortical folding

    Research on Application System of Three-Dimensional Design of Transmission Line Based on Grid GIS Cloud Platform

    No full text
    Intelligent integration has been basically achieved in transmission line design in developed countries, while the current management design level in this field in China is backward and inefficient. According to the characteristics of the pilot transmission line project, it is necessary to build a transmission line 3D design application system based on the grid GIS cloud platform with the advantages of webgl cross platform and without installing plug-ins, to assist in the application of transmission line 3D design, and to develop the interface with professional line 3D design software, so as to realize the smooth operation of GIS elevation and image information and other information such as line selection and capital collection. Experiments prove that the construction of transmission line three-dimensional design application system based on grid GIS cloud platform provides a set of simple, fast, convenient and intelligent and efficient three-dimensional design support for planners and designers. It is an effective means for modern power enterprises to improve management design level and work efficiency, and has great significance in economic and social benefits

    Conical Statistical Optimal Near-Field Acoustic Holography with Combined Regularization

    No full text
    For the sound field reconstruction of large conical surfaces, current statistical optimal near-field acoustic holography (SONAH) methods have relatively poor applicability and low accuracy. To overcome this problem, conical SONAH based on cylindrical SONAH is proposed in this paper. Firstly, elementary cylindrical waves are transformed into those suitable for the radiated sound field of the conical surface through cylinder-cone coordinates transformation, which forms the matrix of characteristic elementary waves in the conical spatial domain. Secondly, the sound pressure is expressed as the superposition of those characteristic elementary waves, and the superposition coefficients are solved according to the principle of superposition of wave field. Finally, the reconstructed conical pressure is expressed as a linear superposition of the holographic conical pressure. Furthermore, to overcome ill-posed problems, a regularization method combining truncated singular value decomposition (TSVD) and Tikhonov regularization is proposed. Large singular values before the truncation point of TSVD are not processed and remaining small singular values representing high-frequency noise are modified by Tikhonov regularization. Numerical and experimental case studies are carried out to validate the effectiveness of the proposed conical SONAH and the combined regularization method, which can provide reliable evidence for noise monitoring and control of mechanical systems

    Axonal Fiber Terminations Concentrate on Gyri

    No full text
    Convoluted cortical folding and neuronal wiring are 2 prominent attributes of the mammalian brain. However, the macroscale intrinsic relationship between these 2 general cross-species attributes, as well as the underlying principles that sculpt the architecture of the cerebral cortex, remains unclear. Here, we show that the axonal fibers connected to gyri are significantly denser than those connected to sulci. In human, chimpanzee, and macaque brains, a dominant fraction of axonal fibers were found to be connected to the gyri. This finding has been replicated in a range of mammalian brains via diffusion tensor imaging and high–angular resolution diffusion imaging. These results may have shed some lights on fundamental mechanisms for development and organization of the cerebral cortex, suggesting that axonal pushing is a mechanism of cortical folding

    A longitudinal resource for population neuroscience of school-age children and adolescents in China

    No full text
    During the past decade, cognitive neuroscience has been calling for population diversity to address the challenge of validity and generalizability, ushering in a new era of population neuroscience. The developing Chinese Color Nest Project (devCCNP, 2013-2022), the first ten-year stage of the lifespan CCNP (2013-2032), is a two-stages project focusing on brain-mind development. The project aims to create and share a large-scale, longitudinal and multimodal dataset of typically developing children and adolescents (ages 6.0-17.9 at enrolment) in the Chinese population. The devCCNP houses not only phenotypes measured by demographic, biophysical, psychological and behavioural, cognitive, affective, and ocular-tracking assessments but also neurotypes measured with magnetic resonance imaging (MRI) of brain morphometry, resting-state function, naturalistic viewing function and diffusion structure. This Data Descriptor introduces the first data release of devCCNP including a total of 864 visits from 479 participants. Herein, we provided details of the experimental design, sampling strategies, and technical validation of the devCCNP resource. We demonstrate and discuss the potential of a multicohort longitudinal design to depict normative brain growth curves from the perspective of developmental population neuroscience. The devCCNP resource is shared as part of the "Chinese Data-sharing Warehouse for In-vivo Imaging Brain" in the Chinese Color Nest Project (CCNP) - Lifespan Brain-Mind Development Data Community (https://ccnp.scidb.cn) at the Science Data Bank
    corecore