442 research outputs found

    Effect of immunotherapy on T lymphocyte subsets, FOXP3 and IFN-γ/IL-4 ratio in children with allergic asthma

    Get PDF
    Purpose: To study the effect of specific immunotherapy on T lymphocyte subsets, FOXP3 and IFN-γ/IL-4 in children with allergic asthma (AA). Methods: 57 AA children were selected and received the allergen specific immunotherapy, thereafter, the T lymphocyte subsets, FOXP3 and IFN-γ/IL-4 ratio were measured at three time points, before treatment, after 1yr and 2yr of treatment. Then the clinical efficacy after 2yr was recorded. Results: The pre- and post- treatment percentages of CD4 + CD25 + T cells in CD4 + T cells had no difference (P>0.05). The proportion of CD4 + CD25 high T cells in CD4 + T was significantly increased after 1yr and 2yr of treatment (P<0.05), the difference between that after 1yr and 2yr of treatment was not significant. The relative expression of FOXP3 at three time points in a descending order was after 1yr, 2yr of treatment and pre-treatment (P<0.05). The relative IFN-γ expression after 1yr of treatment increased and returned to pre-treatment level after 2yr of treatment; IL-4 expression levels decreased as the treatment time extended; The IFN-γ/IL-4 ratio at three time points in a descending order was after 1yr, 2yr of treatment and pretreatment (P<0.05). The levels of IL-4 and IFN-γ in the children increased significantly as treatment time extended (P<0.05), and became stable after 1yr and 2yr of treatment, while the concentration of IL-4 showed a decrease trend (P<0.05), also tended to be stable after 1yr and 2yr of treatment. The clinical efficacy after 2yr of treatment was 87.72%. Conclusion: This study has revealed that FOXP3, IFN-γ, and IL-4 have significant roles FOXP3 in the process of specific immunotherapy for children with allergic asthma. Further studies are needed to explore the mechanism

    Depth related variation of isoprenoid and hydroxylated tetraether lipids in Lake Lugu, Southwest China:Implications for palaeoenvironmental reconstructions

    Get PDF
    Archaeal glycerol dibiphytanyl glycerol tetraethers (isoGDGTs) and their hydroxylated derivatives (OH-GDGTs) have been increasingly applied to reconstruct past changes in lake temperature and lake-level using down-core sediments. However, a detailed examination of the distribution pattern of iso- and OH-GDGTs in lacustrine sediments is so far limited. To investigate the controls on the sedimentary GDGT distribution in lakes, we examined the archaeal GDGT distribution in surface sediments at different water depths from Lake Lugu, a deep alpine lake in southwest China. Our aim is to determine their distribution, sources and controlling factors. Based on the significant correlations between iso- and OH-GDGTs in deep-water sediments (> 20 m), we suggest that the main biological source of archaeal GDGTs in surface sediments is aquatic Group I.1a Thaumarchaeota (Nitrosoarchaeum). The depth-related variation of iso- and OH-GDGTs indicates that water depth is the main factor affecting the distribution of archaeal GDGTs in Lake Lugu, reflecting that Thaumarchaeota prefer to live in the deeper layer above the oxycline. This relationship leads to a positive correlation between %Cren, %OH-GDGTs, and Cren/Cren’ with water depth, confirming their potential application for paleo-lake level reconstruction. Our study improves the understanding of the factors that control the archaeal GDGTs in a deep alpine lake and suggest that they might be used as lake-level indicators

    Molecularly imprinted fluoroprobes doped with Ag nanoparticles for highly selective detection of oxytetracycline in real samples

    Get PDF
    A molecularly imprinted polymer (MIP), which is synthesized by a nanomolding process around a template, has emerged as a promising analytical tool for environmental quality monitoring and food safety test.In this work, a fluoroprobe with Ag-doped MIP nanolayer (16 nm thickness) is successfully prepared for the highly selective detection of oxytetracycline (OTC) in real samples (i.e. Yangtze River water, swine urine). In the MIP nanolayer, two functional monomers (i.e. 4-(2-acrylamidoethylcarbamoyl)-3-fluorophenylboronic acid, methacrylic acid) synergistically constitute the specific recognition sites. Meanwhile, the doped Ag enhances the detection sensitivity (with a detection limit of 5.38 nM) and accelerates the detection rate (within 2.5 min) even in real samples. Therefore, the present study paves the way for the preparation of MIP-based fluoroprobes, showing great prospects in environmental quality and food safety tests.(c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

    Comparative analysis of long noncoding RNAs in angiosperms and characterization of long noncoding RNAs in response to heat stress in Chinese cabbage

    Get PDF
    Long noncoding RNAs (lncRNAs) are widely present in different species and play critical roles in response to abiotic stresses. However, the functions of lncRNAs in Chinese cabbage under heat stress remain unknown. Here, we first conducted a global comparative analysis of 247,242 lncRNAs among 37 species. The results indicated that lncRNAs were poorly conserved among different species, and only 960 lncRNAs were homologous to 524 miRNA precursors. We then carried out lncRNA sequencing for a genome-wide analysis of lncRNAs and their target genes in Chinese cabbage at different stages of heat treatment. In total, 18,253 lncRNAs were identified, of which 1229 differentially expressed (DE) lncRNAs were characterized as being heat-responsive. The ceRNA network revealed that 38 lncRNAs, 16 miRNAs, and 167 mRNAs were involved in the heat response in Chinese cabbage. Combined analysis of the cis- and trans-regulated genes indicated that the targets of DE lncRNAs were significantly enriched in the “protein processing in endoplasmic reticulum” and “plant hormone signal transduction” pathways. Furthermore, the majority of HSP and PYL genes involved in these two pathways exhibited similar expression patterns and responded to heat stress rapidly. Based on the networks of DE lncRNA-mRNAs, 29 and 22 lncRNAs were found to interact with HSP and PYL genes, respectively. Finally, the expression of several critical lncRNAs and their targets was verified by qRT-PCR. Overall, we conducted a comparative analysis of lncRNAs among 37 species and performed a comprehensive analysis of lncRNAs in Chinese cabbage. Our findings expand the knowledge of lncRNAs involved in the heat stress response in Chinese cabbage, and the identified lncRNAs provide an abundance of resources for future comparative and functional studies

    Dual‐templating surface gel into thin SSZ‐13 zeolite membrane for fast selective hydrogen separation

    Get PDF
    Abstract: Highly permeable zeolite membranes are desirable for fast gas separation in the industry. Reducing the membrane's thickness is deemed to be an optimal solution for permeability improvement. Herein, we report the synthesis route of thin SSZ‐13 zeolite membranes via the conversion of template‐contained surface gels. The synthesis gel is fully crystallized into crack‐free SSZ‐13 membranes assisted with dual templates of N, N, N‐trimethyl‐1‐adamantammonium hydroxide (TMAdaOH) and tetraethylammonium hydroxide (TEAOH). The specific functions of TMAdaOH for structure directing and TEAOH for crystallization regulating are well discussed. Thin surface gel layer is impregnated onto porous alumina with subsequent crystallization into a 500 nm thick membrane. This submicron‐thick membrane exhibits high H2 permeance with 50 × 10−8 mol s−1 m−2 Pa−1 during hydrogen separation. Meanwhile, the separation factors are retained around 23.0 and 31.5 for H2/C2H6 and H2/C3H8, respectively. This approach offers a possibility for obtaining high‐quality zeolite membranes for efficient hydrogen separation

    Autoimmune nodopathy with anti-contactin 1 antibody characterized by cerebellar dysarthria: a case report and literature review

    Get PDF
    BackgroundAutoimmune nodopathy (AN) has emerged as a novel diagnostic category that is pathologically different from classic chronic inflammatory demyelinating polyneuropathy. Clinical manifestations of AN include sensory or motor neuropathies, sensory ataxia, tremor, and cranial nerve involvement. AN with a serum-positive contactin-1 (CNTN1) antibody usually results in peripheral nerve demyelination. In this study, we reported a rare case of AN with CNTN1 antibodies characterized by the presence of CNTN1 antibodies in both serum and cerebrospinal fluid, which is associated with cerebellar dysarthria.MethodsA 25-year-old man was admitted to our hospital due to progressive dysarthria with limb tremors. The patient was initially diagnosed with peripheral neuropathy at a local hospital. Three years after onset, he was admitted to our hospital due to dysarthria, apparent limb tremor, and limb weakness. At that time, he was diagnosed with spinocerebellar ataxia. Eight years post-onset, during his second admission, his condition had notably deteriorated. His dysarthria had evolved to typical distinctive cerebellar characteristics, such as tremor, loud voice, stress, and interrupted articulation. Additionally, he experienced further progression in limb weakness and developed muscle atrophy in the distal limbs. Magnetic resonance imaging (MRI), nerve conduction studies (NCS), and autoimmune antibody tests were performed.ResultsThe results of the NCS suggested severe demyelination and even axonal damage to the peripheral nerves. MRI scans revealed diffuse thickening of bilateral cervical nerve roots, lumbosacral nerve roots, cauda equina nerve, and multiple intercostal nerve root sheath cysts. Furthermore, anti-CNTN1 antibody titers were 1:10 in the cerebrospinal fluid (CSF) and 1:100 in the serum. After one round of rituximab treatment, the patient showed significant improvement in limb weakness and dysarthria, and the CSF antibodies turned negative.ConclusionApart from peripheral neuropathies, cerebellar dysarthria (central nervous system involvement) should not be ignored in AN patients with CNTN1 antibodies

    The first rare case of Candida palmioleophila infection reported in China and its genomic evolution in a human host environment

    Get PDF
    IntroductionCandida palmioleophila is a rare human pathogenic fungus, which has been poorly characterized at the genome level. In this study, we reported the first fatal case of C. palmioleophila infection in China and investigate the microevolution of C. palmioleophila in the human host environment.MethodsA series of C. palmioleophila stains were collected from the patient at different time points for routine microbial and drug sensitivity testing. The first C. palmioleophila isolate 07202534 was identified by de novo whole genome sequencing. The in vitro and in vivo genetic evolutionary characteristics of C. palmioleophila were discussed based on the analysis of bioinformatics data.ResultsThe six C. palmioleophila isolates displayed dose-dependent sensitivity to fluconazole. The C. palmioleophila genome contained homologous genes such as CDR1 and MDR1, which were recognized to be related to azole resistance. In addition, amino acid variation was detected at F105L and other important sites of ERG11. In addition, the mean divergence time between C. palmioleophila and Scheffersomyces stipites CBS 6054 was 406.04 million years, indicating that C. palmioleophila originated earlier than its closest relative. In addition, the six strains of C. palmioleophila isolated form the patient had higher homology and fewer mutation sites, which indicated the stability in C. palmioleophila genome. We also found that C. palmioleophila had a wide natural niche and may evolve slowly.DiscussionWe believe that this study will contribute to improve our understanding of the genetic evolution, pathogenicity, and drug resistance of C. palmioleophila and will aid in the prevention and control of its spread

    miR-27b Suppresses Endothelial Cell Proliferation and Migration by Targeting Smad7 in Kawasaki Disease

    Get PDF
    Background/Aims: Increasing evidence indicates that microRNAs (miRNAs) play important roles in Kawasaki disease (KD). Our previous study demonstrated that hsa-miR-27b-3p (miR-27b) was up-regulated in KD serum. However, the specific role of miR-27b in KD remains unclear. We aimed to investigate that miR-27b could be a biomarker and therapeutic target for KD treatment. As well, the specific mechanism of miR-27b effecting endothelial cell functions was studied. Methods: The expression of miR-27b and Smad7 was measured by qRT-PCR. Gain-of-function strategy was used to observe the effect of miR-27b on human umbilical vein endothelial cells (HUVECs) proliferation and migration. Bioinformatics analyses were applied to predict miR-27b targets and then we verified Smad7 by a luciferase reporter assay. Western blot was performed to detect the protein expression of Smad7, PCNA, MMP9, MMP12 and TGF-β-related genes. Results: We confirmed that miR-27b was shown to be dramatically up-regulated in KD serum and KD serum-treated HUVECs and that elevated expression of miR-27b suppressed the proliferation and migration of HUVECs. Furthermore, our results verified that miR-27b mediated cell functions by affecting the TGF-β via targeting Smad7 in HUVECs. Conclusion: These results suggested that up-regulated miR-27b had a protective role in HUVECs proliferation and migration via targeting Smad7 and affecting TGF-β pathway. Therefore, miR-27b represented a potential biomarker for KD and may serve as a promising therapeutic target for KD treatment
    corecore