79 research outputs found

    Ginsenoside induces apoptosis, autophagy and cell cycle arrest in gastric cancer cells by regulation of reactive oxygen species and activation of MAPK pathway

    Get PDF
    Purpose: To study the influence of ginsenoside on apoptosis, cell cycle and autophagy in gastric carcinoma (GC), and its effect on reactive oxygen species (ROS) levels and the mitogen-activated protein kinase (MAPK) pathway. Methods: Human gastric cancer cell line BGC-823 was randomly divided into the following groups: control, 100 μM ginsenoside (Rg5), 150 μM Rg5, and 200 μM Rg5 groups. Western blot assay was used to determine the expressions of autophagy-associated protein 12 (Atg12), Beclin-1, lc3b II, cycle-related protein, phosphated mitotic cyclin 25 homologous protein C (p-cdc25c), cyclin B1, and MAPK signaling pathway-related proteins. Results: There was significantly higher apoptosis in Rg5-treated BGC-823 cells than in untreated cells. Relative protein levels of Beclin-1, Atg5, Atg12, and lc3b II in BGC-823 cells in Rg5 groups were significantly and concentration-dependently up-regulated, relative to the corresponding expression levels in untreated cells. There were markedly up-regulated proteins of p-cdc25c, cyclin B1 and p-cdc2 in Rg5-exposed BGC-823 cells than in untreated cells, while CDC2 protein expression was significantly and concentration-dependently lower than that of control group (p < 0.05). Rg5 treatment resulted in marked and concentration-dependent increases in ROS levels in BGC-823 cells, relative to control cells (p < 0.05), whereas the expression levels of p-p38, p-JNK and p-ERK were significantly higher in Rg5-exposed cells than in unexposed cells (p < 0.05). Conclusion: Ginsenoside induces apoptosis, autophagy and cycle interruption in GC cells by regulating ROS production and activating MAPK pathway. Therefore, ginsenoside may be a promising agent for the management of gastric cancer. However, there is a need to conduct in vivo studies on the compound

    Ethical conflict in nursing: A concept analysis

    Get PDF
    Aims and Objectives The purpose of this paper was to clarify the concept of ethical conflict in nursing and highlight the importance of tackling this issue. Background Ethical conflict is on the rise in the nursing context. It is associated with the compromise of nurses' well-being and patient care. However, there is no thorough conceptual understanding of this concept. Design Concept analysis. Methods Databases (PubMed, PsycINFO, CINAHL, Scopus, Embase, Web of Science and SocINDEX) were searched for studies between 1984 and 2021. Both quantitative and qualitative studies related to ethical conflict in nursing were included. Walker and Avant's method of concept analysis was used to identify the defining attributes, antecedents and consequences of the concept of ethical conflict in nursing. We followed the PRISMA-ScR checklist to report the study. Results Thirty studies were included for conceptualization. Defining attributes were divided into four categories: (1) emotional responses, (2) incompatible values, (3) competing interests and (4) ambiguous obligations. The antecedents were (1) ethical sensitivity, (2) negative ethical climate, (3) insufficient authority, (4) unrealistic expectations, (5) poor collaboration and (6) inadequate resources. The consequences were identified as (1) moral residue, (2) loss of identity, (3) professional burnout and (4) poor patient care. Conclusions A unified conceptual model of ethical conflict in nursing shed light on the ethical issues nurses might come across in practice. Despite the fact that ethical conflict is inherently negative, we conceptualised this concept as a neutral fact and an opportunity for nursing action. The construct identification provides basis for both the development of practice and the development of staff support and education

    Strand-specific PCR of UV radiation-damaged genomic DNA revealed an essential role of DNA-PKcs in the transcription-coupled repair

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In eukaryotic cells, there are two sub-pathways of nucleotide excision repair (NER), the global genome (gg) NER and the transcription-coupled repair (TCR). TCR can preferentially remove the bulky DNA lesions located at the transcribed strand of a transcriptional active gene more rapidly than those at the untranscribed strand or overall genomic DNA. This strand-specific repair in a suitable restriction fragment is usually determined by alkaline gel electrophoresis followed by Southern blotting transfer and hybridization with an indirect end-labeled single-stranded probe. Here we describe a new method of TCR assay based on strand-specific-PCR (SS-PCR). Using this method, we have investigated the role of DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a member of the phosphatidylinositol 3-kinase-related protein kinases (PIKK) family, in the TCR pathway of UV-induced DNA damage.</p> <p>Results</p> <p>Although depletion of DNA-PKcs sensitized HeLa cells to UV radiation, it did not affect the ggNER efficiency of UV-induced cyclobutane pyrimidine dimers (CPD) damage. We postulated that DNA-PKcs may involve in the TCR process. To test this hypothesis, we have firstly developed a novel method of TCR assay based on the strand-specific PCR technology with a set of smart primers, which allows the strand-specific amplification of a restricted gene fragment of UV radiation-damaged genomic DNA in mammalian cells. Using this new method, we confirmed that siRNA-mediated downregulation of Cockayne syndrome B resulted in a deficiency of TCR of the UV-damaged dihydrofolate reductase (<it>DHFR</it>) gene. In addition, DMSO-induced silencing of the c-myc gene led to a decreased TCR efficiency of UV radiation-damaged c-myc gene in HL60 cells. On the basis of the above methodology verification, we found that the depletion of DNA-PKcs mediated by siRNA significantly decreased the TCR capacity of repairing the UV-induced CPDs damage in <it>DHFR </it>gene in HeLa cells, indicating that DNA-PKcs may also be involved in the TCR pathway of DNA damage repair. By means of immunoprecipitation and MALDI-TOF-Mass spectrometric analysis, we have revealed the interaction of DNA-PKcs and cyclin T2, which is a subunit of the human transcription elongation factor (P-TEFb). While the P-TEFb complex can phosphorylate the serine 2 of the carboxyl-terminal domain (CTD) of RNA polymerase II and promote transcription elongation.</p> <p>Conclusion</p> <p>A new method of TCR assay was developed based the strand-specific-PCR (SS-PCR). Our data suggest that DNA-PKcs plays a role in the TCR pathway of UV-damaged DNA. One possible mechanistic hypothesis is that DNA-PKcs may function through associating with CyclinT2/CDK9 (P-TEFb) to modulate the activity of RNA Pol II, which has already been identified as a key molecule recognizing and initializing TCR.</p

    A Novel Porous Carrier Found in Nature for Nanocomposite Materials Preparation: A Case Study of Artemia Egg Shell-Supported TiO 2 for Formaldehyde Removal

    Get PDF
    Artemia egg shells have an asymptotic sized pore structure (pore diameter: 500 nm-2500 nm), which could be used as a porous carrier for the preparation of nanocomposite materials. The objective of the present study was to prepare shell-supported TiO 2 using a naturally porous carrier, Artemia egg shell, and to exhibit a case study of shell-supported TiO 2 for formaldehyde removal. Characterization of shell-TiO 2 using SEM-EDS, TEM, and XRD proved that Artemia shell with asymptotic reduction pores (pore diameter: 500 nm-2500 nm) can be used as the carrier for nanocomposite materials. Artemia egg shell-supported TiO 2 in polycrystalline-like nanostructures can be used for the high efficiency removal (adsorption and degradation) of formaldehyde under visible light. Our results suggest that iron, one of the shell&apos;s components, should broaden the absorption of visible light and enhance the photocatalytic efficiency of nanotitanium dioxide under visible light. Due to their interesting absorption and formaldehyde removal qualities, Artemia egg shell, as a novel naturally porous carrier for nanocomposite materials preparation, especially in the preparation of nanocatalysts, is worthy of further study

    Variants in MME are associated with autosomal-recessive distal hereditary motor neuropathy

    Get PDF
    © 2019 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association. Objective: To identify a new genetic cause in patients segregating distal hereditary motor neuropathy (dHMN) with an autosomal recessive pattern. Methods: Whole-exome sequencing was conducted in two siblings and was combined with segregation analysis. Additionally, 83 unrelated dHMN patients with unknown genetic cause were screened. RNA analysis was performed using blood lymphocytes and HEK293 cells transfected with mutant plasmids. Immunohistochemistry and Western blot analysis was applied to the nerve tissue. The enzymatic activities of mutant proteins were measured in the cultured cells to verify the pathogenicity of variants. Results: The clinical features of the patients showed late-onset phenotype of distal motor neuropathy without sensory involvement. We identified that compound heterozygous variants of c.1342C\u27T and c.2071_2072delGCinsTT in the membrane metalloendopeptidase (MME) gene co-segregated with the phenotype in a dHMN family. In an additional group of 83 patients with dHMN, compound heterozygous variants of c.1416+2T\u27C and c.2027C\u27T in MME were identified in one patient. The splice site variant c.1416+2T\u27C results in skipping of exon 13. The stop variant c.1342C\u27T induces mRNA degradation via nonsense-mediated mRNA decay. Transcript levels of MME in the lymphocytes showed no significant differences between the patients and controls. We also identified that MME variants were associated with mild decrease in protein expression in the sural nerve and significant impairments of enzymatic activity. Interpretation: Variants in the MME gene were associated with not only a Charcot-Marie-Tooth neuropathy phenotype but also with an autosomal-recessive dHMN phenotype. Loss of function may play a role in the pathogenesis of dHMN

    Development and validation of risk prediction model for identifying 30-day frailty in older inpatients with undernutrition: A multicenter cohort study

    Get PDF
    ObjectiveTo develop and externally validate a frailty prediction model integrating physical factors, psychological variables and routine laboratory test parameters to predict the 30-day frailty risk in older adults with undernutrition.MethodsBased on an ongoing survey of geriatrics syndrome in elder adults across China (SGSE), this prognostic study identified the putative prognostic indicators for predicting the 30-day frailty risk of older adults with undernutrition. Using multivariable logistic regression analysis with backward elimination, the predictive model was subjected to internal (bootstrap) and external validation, and its calibration was evaluated by the calibration slope and its C statistic discriminative ability. The model derivation and model validation cohorts were collected between October 2018 and February 2019 from a prospective, large-scale cohort study of hospitalized older adults in tertiary hospitals in China. The modeling derivation cohort data (n = 2,194) were based on the SGSE data comprising southwest Sichuan Province, northern Beijing municipality, northwest Qinghai Province, northeast Heilongjiang Province, and eastern Zhejiang Province, with SGSE data from Hubei Province used to externally validate the model (validation cohort, n = 648).ResultsThe incidence of frailty in the older undernutrition derivation cohort was 13.54% and 13.43% in the validation cohort. The final model developed to estimate the individual predicted risk of 30-day frailty was presented as a regression formula: predicted risk of 30-day frailty = [1/(1+e-riskscore )], where riskscore = -0.106 + 0.034 × age + 0.796 × sex -0.361 × vision dysfunction + 0.373 × hearing dysfunction + 0.408 × urination dysfunction - 0.012 × ADL + 0.064 × depression - 0.139 × nutritional status - 0.007 × hemoglobin - 0.034 × serum albumin - 0.012 × (male: ADL). Area under the curve (AUC) of 0.71 in the derivation cohort, and discrimination of the model were similar in both cohorts, with a C statistic of nearly 0.7, with excellent calibration of observed and predicted risks.ConclusionA new prediction model that quantifies the absolute risk of frailty of older patients suffering from undernutrition was developed and externally validated. Based on physical, psychological, and biological variables, the model provides an important assessment tool to provide different healthcare needs at different times for undernutrition frailty patients.Clinical trial registrationChinese Clinical Trial Registry [ChiCTR1800017682]

    Identification of candidate genes and clarification of the maintenance of the green pericarp of weedy rice grains

    Get PDF
    The weedy rice (Oryza sativa f. spontanea) pericarp has diverse colors (e.g., purple, red, light-red, and white). However, research on pericarp colors has focused on red and purple, but not green. Unlike many other common weedy rice resources, LM8 has a green pericarp at maturity. In this study, the coloration of the LM8 pericarp was evaluated at the cellular and genetic levels. First, an examination of their ultrastructure indicated that LM8 chloroplasts were normal regarding plastid development and they contained many plastoglobules from the early immature stage to maturity. Analyses of transcriptome profiles and differentially expressed genes revealed that most chlorophyll (Chl) degradation-related genes in LM8 were expressed at lower levels than Chl a/b cycle-related genes in mature pericarps, suggesting that the green LM8 pericarp was associated with inhibited Chl degradation in intact chloroplasts. Second, the F2 generation derived from a cross between LM8 (green pericarp) and SLG (white pericarp) had a pericarp color segregation ratio of 9:3:4 (green:brown:white). The bulked segregant analysis of the F2 populations resulted in the identification of 12 known genes in the chromosome 3 and 4 hotspot regions as candidate genes related to Chl metabolism in the rice pericarp. The RNA-seq and sqRT-PCR assays indicated that the expression of the Chl a/b cycle-related structural gene DVR (encoding divinyl reductase) was sharply up-regulated. Moreover, genes encoding magnesium-chelatase subunit D and the light-harvesting Chl a/b-binding protein were transcriptionally active in the fully ripened dry pericarp. Regarding the ethylene signal transduction pathway, the CTR (encoding an ethylene-responsive protein kinase) and ERF (encoding an ethylene-responsive factor) genes expression profiles were determined. The findings of this study highlight the regulatory roles of Chl biosynthesis- and degradation-related genes influencing Chl accumulation during the maturation of the LM8 pericarp

    The Genomes of Oryza sativa: A History of Duplications

    Get PDF
    We report improved whole-genome shotgun sequences for the genomes of indica and japonica rice, both with multimegabase contiguity, or almost 1,000-fold improvement over the drafts of 2002. Tested against a nonredundant collection of 19,079 full-length cDNAs, 97.7% of the genes are aligned, without fragmentation, to the mapped super-scaffolds of one or the other genome. We introduce a gene identification procedure for plants that does not rely on similarity to known genes to remove erroneous predictions resulting from transposable elements. Using the available EST data to adjust for residual errors in the predictions, the estimated gene count is at least 38,000–40,000. Only 2%–3% of the genes are unique to any one subspecies, comparable to the amount of sequence that might still be missing. Despite this lack of variation in gene content, there is enormous variation in the intergenic regions. At least a quarter of the two sequences could not be aligned, and where they could be aligned, single nucleotide polymorphism (SNP) rates varied from as little as 3.0 SNP/kb in the coding regions to 27.6 SNP/kb in the transposable elements. A more inclusive new approach for analyzing duplication history is introduced here. It reveals an ancient whole-genome duplication, a recent segmental duplication on Chromosomes 11 and 12, and massive ongoing individual gene duplications. We find 18 distinct pairs of duplicated segments that cover 65.7% of the genome; 17 of these pairs date back to a common time before the divergence of the grasses. More important, ongoing individual gene duplications provide a never-ending source of raw material for gene genesis and are major contributors to the differences between members of the grass family

    Axiomatizing multi-prize nested lottery contests: A complete and strict ranking perspective

    No full text
    10.1016/j.jebo.2015.04.010Journal of Economic Behavior and Organization116127-14
    corecore