71 research outputs found

    RACIPE: a computational tool for modeling gene regulatory circuits using randomization.

    Get PDF
    BACKGROUND: One of the major challenges in traditional mathematical modeling of gene regulatory circuits is the insufficient knowledge of kinetic parameters. These parameters are often inferred from existing experimental data and/or educated guesses, which can be time-consuming and error-prone, especially for large networks. RESULTS: We present a user-friendly computational tool for the community to use our newly developed method named random circuit perturbation (RACIPE), to explore the robust dynamical features of gene regulatory circuits without the requirement of detailed kinetic parameters. Taking the network topology as the only input, RACIPE generates an ensemble of circuit models with distinct randomized parameters and uniquely identifies robust dynamical properties by statistical analysis. Here, we discuss the implementation of the software and the statistical analysis methods of RACIPE-generated data to identify robust gene expression patterns and the functions of genes and regulatory links. Finally, we apply the tool on coupled toggle-switch circuits and a published circuit of B-lymphopoiesis. CONCLUSIONS: We expect our new computational tool to contribute to a more comprehensive and unbiased understanding of mechanisms underlying gene regulatory networks. RACIPE is a free open source software distributed under (Apache 2.0) license and can be downloaded from GitHub ( https://github.com/simonhb1990/RACIPE-1.0 )

    Synthesis and Biological Evaluation of Novel Allobetulon/Allobetulin–Nucleoside Conjugates as AntitumorAgents

    Get PDF
    Allobetulin is structurally similar tobetulinic acid, inducing the apoptosis of cancer cells with low toxicity. However, both of them exhibited weak antiproliferation against several tumor cell lines. Therefore, the new series of allobetulon/allobetulin–nucleoside conjugates 9a–10i were designed and synthesized for potency improvement. Compounds 9b, 9e, 10a, and 10d showed promising antiproliferative activity toward six tested cell lines, compared to zidovudine, cisplatin, and oxaliplatin based on their antitumor activity results. Among them, compound 10d exhibited much more potent antiproliferative activity against SMMC-7721, HepG2, MNK-45, SW620, and A549 human cancer cell lines than cisplatin and oxaliplatin. In the preliminary study for the mechanism of action, compound 10d induced cell apoptosis and autophagy in SMMC cells, resulting in antiproliferation and G0/G1 cell cycle arrest by regulating protein expression levels of Bax, Bcl-2, and LC3. Consequently, the nucleoside-conjugated allobetulin (10d) evidenced that nucleoside substitution was a viable strategy to improve allobetulin/allobetulon’s antitumor activity based on our present study
    • …
    corecore