267 research outputs found

    Wide Swath Stereo Mapping from Gaofen-1 Wide-Field-View (WFV) Images Using Calibration

    Get PDF
    The development of Earth observation systems has changed the nature of survey and mapping products, as well as the methods for updating maps. Among optical satellite mapping methods, the multiline array stereo and agile stereo modes are the most common methods for acquiring stereo images. However, differences in temporal resolution and spatial coverage limit their application. In terms of this issue, our study takes advantage of the wide spatial coverage and high revisit frequencies of wide swath images and aims at verifying the feasibility of stereo mapping with the wide swath stereo mode and reaching a reliable stereo accuracy level using calibration. In contrast with classic stereo modes, the wide swath stereo mode is characterized by both a wide spatial coverage and high-temporal resolution and is capable of obtaining a wide range of stereo images over a short period. In this study, Gaofen-1 (GF-1) wide-field-view (WFV) images, with total imaging widths of 800 km, multispectral resolutions of 16 m and revisit periods of four days, are used for wide swath stereo mapping. To acquire a high-accuracy digital surface model (DSM), the nonlinear system distortion in the GF-1 WFV images is detected and compensated for in advance. The elevation accuracy of the wide swath stereo mode of the GF-1 WFV images can be improved from 103 m to 30 m for a DSM with proper calibration, meeting the demands for 1:250,000 scale mapping and rapid topographic map updates and showing improved efficacy for satellite imaging

    Automated image retargeting at scale using a generative adversarial network

    Get PDF
    Given the diverse variety of device screens, approaches that rely on manual creation of various forms of an image for each display situation do not scale. Therefore, automated techniques are required to process and resize images to adjust for different devices on which the image is to be displayed. The goal of automated retargeting is to change the aspect ratio of the original image while preserving the semantic and visual meaning of the content within the image. Currently, typical retargeting processes involve a multitude of operations, use a variety of heuristics that are tuned manually, and do not work effectively for all images. This disclosure describes a generative adversarial network (GAN) used to retarget an input image to a different aspect ratio. The described approach involves scaling each pixel row within an image by a factor between 0 and 1

    Advance in Lutetium Yttrium Silicate Scintillation Crystal for All-Digital PET

    Get PDF
    Lutetium yttrium silicate (LYSO) has become the most prominent scintillation crystal material in positron emission tomography (PET) because of its outstanding comprehensive performance. In recent years, the emerging All-Digital PET technology based on the Multi-Voltage Threshold (MVT) method has digitized the origin of scintillation pulses, thereby improving key metrics such as spatial resolution and system sensitivity; this advancement has also given rise to new applications like proton therapy monitoring and positron lifetime spectroscopy. Unlike traditional time interval sampling methods, MVT represents a longitudinal sampling technique based on voltage-time, offering inherent advantages in rapidly varying pulse signal sampling domains. Consequently, tailoring the scintillation luminescence properties of LYSO crystals to adapt to the MVT sampling method becomes a new development direction for LYSO scintillation crystals under the demand of digital PET applications. This paper reviews the scintillation principles, performance modulation, and growth techniques of LYSO crystals. It outlines strategies for adjusting key properties of LYSO crystals, such as light output, decay time, and uniformity to align with the sampling characteristics of All-Digital PET. Furthermore, the paper presents the research progress of fast-decaying and highly uniform digitally modified LYSO crystals developed by the research team to meet the demands of All-Digital PET. Finally, based on the current research status of LYSO and the new demand for digital PET, the future development direction of LYSO scintillation crystals is discussed

    Is field-measured tree height as reliable as believed A comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest

    Get PDF
    Quantitative comparisons of tree height observations from different sources are scarce due to the difficulties in effective sampling. In this study, the reliability and robustness of tree height observations obtained via a conventional field inventory, airborne laser scanning (ALS) and terrestrial laser scanning (TLS) were investigated. A carefully designed non-destructive experiment was conducted that included 1174 individual trees in 18 sample plots (32 m x 32 m) in a Scandinavian boreal forest. The point density of the ALS data was approximately 450 points/m(2). The TLS data were acquired with multi-scans from the center and the four quadrant directions of the sample plots. Both the ALS and TLS data represented the cutting edge point cloud products. Tree heights were manually measured from the ALS and TLS point clouds with the aid of existing tree maps. Therefore, the evaluation results revealed the capacities of the applied laser scanning (LS) data while excluding the influence of data processing approach such as the individual tree detection. The reliability and robustness of different tree height sources were evaluated through a cross-comparison of the ALS-, TLS-, and field- based tree heights. Compared to ALS and TLS, field measurements were more sensitive to stand complexity, crown classes, and species. Overall, field measurements tend to overestimate height of tall trees, especially tall trees in codominant crown class. In dense stands, high uncertainties also exist in the field measured heights for small trees in intermediate and suppressed crown class. The ALS-based tree height estimates were robust across all stand conditions. The taller the tree, the more reliable was the ALS-based tree height. The highest uncertainty in ALS-based tree heights came from trees in intermediate crown class, due to the difficulty of identifying treetops. When using TLS, reliable tree heights can be expected for trees lower than 15-20 m in height, depending on the complexity of forest stands. The advantage of LS systems was the robustness of the geometric accuracy of the data. The greatest challenges of the LS techniques in measuring individual tree heights lie in the occlusion effects, which lead to omissions of trees in intermediate and suppressed crown classes in ALS data and incomplete crowns of tall trees in TLS data.Peer reviewe

    AUTOMATED ADVERTISEMENT CREATION SYSTEM

    Get PDF
    An advertisement creation system generates sizeless creatives and renders the creatives as display advertisements of any arbitrary dimension. The system extracts text assets and image assets from creatives provided by an advertiser. In particular, the system selects assets to display based on scores for the respective text assets and image assets. The system then combines selected text assets and image assets to generate a final creative. Finally, the system optimizes the final creative and renders the final creative for display

    Three dimension high definition manometry evaluated postoperative anal canal functions in children with congenital anorectal malformations

    Get PDF
    BackgroundWe aimed to evaluate the function of the reconstructed anal canal in postoperative anorectal malformations (ARMs) patients through three dimension (3D) high-definition anorectal manometry.MethodsFrom January 2015 to December 2019, 3D manometry was performed as a postoperative functional assessment of patients with ARMs divided into age subgroups based on the time of manometry. Manometric parameters, such as the length of the anorectal high-pressure zone (HPZ-length), the mean resting and squeeze pressure of HPZ (HPZ-rest and HPZ-sqze), recto-anal inhibitory reflex (RAIR), and strength distribution of the anal canal, were collected and compared with age-matched controls. Their functional outcomes were analyzed with SPSS 23.0 software for statistical analysis.Results171 manometric measurements were performed on 142 postoperative patients (3 months∼15 years). The HPZ-rest in all patients was significantly lower than in age-matched controls (p < 0.05). HPZ-sqze was notably decreased in patients older than 4 years, whereas other age groups were comparable to controls (p < 0.05). The proportions of asymmetric strength distribution and negative RAIR were higher in ARMs patients. The type of anorectal malformations and lower HPZ-rest were the impact factors affecting postoperative functional outcomes.ConclusionsThe majority of the ARMs patients had acceptable functional outcomes. 3D manometry can objectively assess the reconstructed anal canal function. The patients with fecal incontinence had a high proportion of extremely low HPZ-rest and HPZ-sqze, negative RAIR, and asymmetric strength distribution. The manometric details will help the clinicians explore the causes of defecation complications and guide further management
    • …
    corecore