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Abstract: This research focuses on sensing context, modeling human behavior and developing 

a new architecture for a cognitive phone platform. We combine the latest positioning 

technologies and phone sensors to capture human movements in natural environments and 

use the movements to study human behavior. Contexts in this research are abstracted as a 

Context Pyramid which includes six levels: Raw Sensor Data, Physical Parameter, 

Features/Patterns, Simple Contextual Descriptors, Activity-Level Descriptors, and Rich Context. 

To achieve implementation of the Context Pyramid on a cognitive phone, three key 

technologies are utilized: ubiquitous positioning, motion recognition, and human behavior 

modeling. Preliminary tests indicate that we have successfully achieved the Activity-Level 

Descriptors level with our LoMoCo (Location-Motion-Context) model. Location accuracy 

of the proposed solution is up to 1.9 meters in corridor environments and 3.5 meters in 

open spaces. Test results also indicate that the motion states are recognized with an accuracy 

rate up to 92.9% using a Least Square-Support Vector Machine (LS-SVM) classifier. 

Keywords: sensing; location; motion recognition; LS-SVM; cognitive phone; human 

behavior modeling 
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1. Introduction 

Human behavior modeling and activity interpretation are of increasing interest in the information 

society. Social applications such as assisted living and abnormal activity detection draw a lot of 

attention among scientists [1]. Meanwhile, smartphone sensing technologies are nowadays developing 

at an incredible pace. The smartphone boasts a healthy variety of sensor options for sensing the social 

environment. Various locating and context related sensors and network technology are embedded into 

mobile phones, such as GPS, WLAN (a.k.a. Wi-Fi), cellular network antennae, Bluetooth, accelerometers, 

magnetometers, gyroscopes, barometers, proximity sensors, humidity sensors, temperature sensors, 

ambient light sensors, cameras, microphones, etc. With this array of input or stimulus options, coupled 

with capable computational and networking functions, the smartphone becomes an attractive 

“cognitive” platform, which has a great potential to achieve an enough high intelligence to take up on 

the questions of social context, such as “Where are you?”, “What are you doing?”, “How are you 

feeling?”, “Who are you with?”, “What is happening?”, and “Why are you here?”. This article presents 

an approach to sensing human behavior using a cognitive phone and summarizes the current status of 

our research work. 

The question “where are you?” has been studied in the navigation and positioning fields for many 

decades. With the explosive growth of the capabilities in handheld computing devices, an increasing 

amount of research has been focused on positioning solutions using a mobile phone. In order to 

achieve location awareness both indoors and outdoors, as shown in the Figure 1, three families of 

smartphone-based positioning solutions have been studied extensively: satellite-based solutions, 

sensor-based solutions, and RF (radio frequency) signal-based solutions [2]. 

Figure 1. Three families of smartphone-based positioning solutions. 

 

For outdoors, navigation mainly relies on satellite-based technologies. Having a wide coverage and 

high accuracy, standalone global navigation satellite systems (GNSS), namely for example the Global 

Positioning System (GPS), are the most widely applied positioning technology in smartphones. Due to the 

developments of visible GNSS constellations, the GNSS receiver of a smartphone has extended the 

positioning capability to multiple satellites systems. For instance, the Chinese phone manufacturer ZTE, 
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together with Russian GLONASS chipset manufacturer AFK Sistema, has developed the first smart 

phone which embeds both GLONASS and GPS receivers. In addition, assisted GPS, also known as  

A-GPS or AGPS, enhances the performance of the standard GPS with additional network resources [3,4]. 

The existing RF infrastructures introduce some alternatives to positioning technologies on a 

smartphone. Positioning methods using the cellular network and WLAN are now standard features of 

various smartphones, such as iPhone and Android phones. Nokia has likewise developed a WiFi 

triangulation system, which now means that the user is more likely to get a positioning fix while 

indoors or in an urban canyon [5]. Furthermore, short-range RF signals such as Bluetooth [6–11] and 

RFID [12] are also the options for making estimates of a mobile user’s location, for instance, by using 

proximity, fingerprinting, or triangulating. 

Built-in sensors of a smartphone offer the opportunity of continuous navigation when the 

positioning infrastructures are unavailable. Typically, built-in sensors of a smartphone such as 

accelerometer, magnetometer, and gyroscope can be utilized to calculate the smartphone’s speed, 

heading, orientation, or motion mode. The above mentioned outputs can then be applied in a pedestrian 

dead reckoning (PDR) algorithm to assist positioning in challenging environments where the GPS 

performance is poor or WLAN positioning is unavailable [13–15]. In addition, the camera in a smart 

phone is also a potential positioning sensor. Ruotsalainen [16,17] uses a camera on a Nokia N8 

smartphone to detect the heading change of a mobile phone user. Taking advantage of  

the magnetometer in modern smartphones, IndoorAtlas Ltd. (Oulu, Finland) pioneers magnetic  

anomaly-based indoor positioning [18]. Lastly, hybrid solutions [19–21] are adopted to improve the 

availability and reliability of positioning by integrating all three types of solutions. 

Meanwhile, human motion has been widely studied for decades, especially in recent years using 

computer vision technology. Poppe gives an overview of vision-based human motion analysis in [22]. 

Aside from vision-based solutions, sensor-based approaches are also extensively adopted in 

biomedical systems [23–26]. Most of the previous motion recognition related research assumed that 

the Micro-Electro-Mechanical Systems (MEMS) inertial sensors used are fixed on a human body in a 

known orientation [27–30] (e.g., in a pocket, clipped to a belt or on a lanyard) and that an error model 

can be obtained via training to a handful of body positions. Yang [31] uses a phone as the sensor to 

collect activities for off-line analysis purposes. In general, human physical activity recognition using 

MEMS sensors has been extensively applied for health monitoring, emergency services, athletic 

training, navigation, [32,33]. Since motion sensors such as accelerometers, gyroscopes and 

magnetometers are integrated into a smartphone, they bring the opportunity to assist navigation with 

knowledge about the motion of a pedestrian [34]. 

Together these developments suggest that locating and motion recognizing capabilities can enable the 

cognitive ability of sensing human behavior using a smartphone. For instance, Eagle and Pentland [35] 

introduce a system for sensing complex social systems using Bluetooth-enabled phones. Adams et al. [36] 

present online algorithms to extract social context: Social spheres are labeled locations of significance, 

represented as convex hulls extracted from GPS traces. Anderson et al. [37] explore the potential for 

use of a mobile phone as a health promotion tool. They develop a prototype application that tracks the 

daily exercise activities of people, using an Artificial Neural Network (ANN) to analyse GSM (Global 

System for Mobile communications) cell signal strength and visibility to estimate a user’s movement. 

Choudhury and Pentland [38] develop methods to automatically and unobtrusively learn the social 
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network structures that arise within human groups based on wearable sensors. Choudhury et al. [39] 

introduce some of the current approaches in activity recognition which use a variety of different 

sensors to collect data about users’ activities. In this paper probabilistic models and relational 

information are used to transform the raw sensor data into higher-level descriptions of people’s 

behaviors and interactions. Lane et al. [40] survey existing mobile phone sensing algorithms, 

applications, and systems. Campbell and Choudhury first introduce the Cognitive Phone concept and 

enumerate applications utilizing cognitive phones in [41]. Even though the term Cognitive Phone has 

not been officially defined yet, from the examples given by [41], the Cognitive Phone is argued to be 

the next step in the evolution of the mobile phone, which has the intelligence of sensing and inferring 

human behavior and context. 

Similarly, this paper will introduce an approach to sensing human behavior, which primarily relies 

on ubiquitous positioning technologies and motion recognition methods. In the above cognitive 

research, positioning technologies such as GPS [36] and proximity [35] have been used for social 

context sensing. However, only outdoor activities are available because GPS is unavailable. Bluetooth 

proximity technology is applied for identifying users are close in terms of location. Different from the 

above cognition research, this approach will fully utilize seamless locating technologies on a 

smartphone for human behavior modeling purpose. In addition, motion states, which are usually 

applied for detecting personal activities [31] or some positioning purposes [33,34], will also be used 

for modeling human behavior in our proposed cognitive phone solution. A human behavior modeling 

approach named Location-Motion-Context (LoMoCo) is proposed for fusing location and motion 

information and inferring user’s contexts. The rest of this paper is organized as follows: Section 2 

provides an overview of the background of this research; Section 3 presents the proposed methods of 

ubiquitous positioning. We describe details of motion recognition in Section 4. Details of the LoMoCo 

model are represented in Section 5. Section 6 evaluates the proposed solution with experimental 

results. Finally, Section 7 concludes the paper and provides directions for future work. 

2. Background and Related Work 

This research is supported by a project titled INdoor Outdoor SEamless Navigation for Sensing 

Human Behavior (INOSENSE), funded by the Academy of Finland. The goal of the project is to carry 

out a study on sensing social context, modeling human behavior and developing a new mobile 

architecture for social applications. It aims to build a new analysis system by combining the latest 

navigation technologies and self-contained sensors to capture social contexts in real-time and use the 

system to study human movement and behavior in natural environments. 

We abstract the social context as a Context Pyramid, as shown in Figure 2, where the raw data from 

diverse sensors is the foundation of the Context Pyramid. Based on the Raw Sensor Data, we can 

extract Physical Parameters such as position coordinates, acceleration, heading, angular velocity, 

velocity, and orientation. Features/Patterns of physical parameters are generated for further pattern 

recognition in the Simple Contextual Descriptors, which infer the simple context such as location, 

motion, and surroundings. Activity-Level Descriptors combine the simple contextual information into 

the activity level. On the top of the pyramid, Rich Context includes rich social and psychological 

contexts, which is ultimately expressed in natural language. 
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Figure 2. Context pyramid. 

 

To implement the Context Pyramid, we break down the research into three modules as shown in 

Figure 3. In module I, we sense the social context with navigation and audio/visual sensors with output 

options such as position, motion, audio streams and visual contexts. The bottom three levels in the 

Context Pyramid are implemented in this module. Next, we analyze the social context and model 

human behavior in module II, which realizes the top three levels of the pyramid. Smartphone-based 

social applications ultimately use the human behavior models derived from module II, or the low level 

information from module I to demonstrate the use of sensing human behavior using indoor/outdoor 

seamless positioning technologies. Figure 4 gives two examples of mobile social applications based on 

the proposed architecture. On the left side is an application logging the location and motion of an 

employee in a workplace. It is an indoor social application using WiFi localization and motion sensors. 

On the right side is an application that interprets the commuting context of an employee, who works 

outdoors, based on location obtained from GPS and motion information from built-in sensors. 

In order to implement cognitive applications, such as those shown in Figure 4, we combine the 

latest positioning technologies and smartphone sensors to capture human movements in natural 

environments and use the movement information to study human behavior. Three key technologies are 

applied in this research: ubiquitous positioning, motion recognition, and human behavior modeling, 

which will be described in the following sections. 
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Figure 3. Architecture of a social application. 

 

Figure 4. Application examples. 

  

In order to implement cognitive applications, such as those shown in Figure 4, we combine the 

latest positioning technologies and smartphone sensors to capture human movements in natural 

environments and use the movement information to study human behavior. Three key technologies are 

applied in this research: ubiquitous positioning, motion recognition, and human behavior modeling, 

which will be described in the following sections. 

3. Ubiquitous Positioning 

Location as a simple contextual descriptor in the Context Pyramid is obtained using various 

positioning technologies. In this research, we integrate three families of smartphone-based positioning 

solutions, satellite-based, sensor-based, and network-based, to achieve the location 

capability both indoors and outdoors. For outdoors, positioning mainly relies on satellite-based 

I- Sensing Social Context with Navigation and 

A/V sensors

II- Social Context Analysis and 

Human Behavior Modelling

III- Smartphone-based Social Applications

Position, Motion, 

Audion/visual context

Human behavior models
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technologies. Assisted with the heading and speed estimated from smartphone sensors, the satellite-

based solution can also survive in the signal-deprived environments, such as urban canyons and 

tunnels [42]. As outdoor positioning solutions have been fully discussed in many publications [43,44], 

we mainly focus on indoor environments in this paper. 

3.1. Indoor Outdoor Detection 

Different positioning technologies are applied indoors and outdoors; therefore, to fulfill the 

seamless positioning function, an environment-aware approach is adopted for detecting the indoor and 

outdoor environments. The determination of indoor/outdoor status is performed using a combination of 

GPS and WiFi information. The outdoor case is recognized when the number of GPS satellites and 

their signal-to-noise ratio is sufficiently high. Conversely, the indoor case is recognized when the GPS 

signals are sufficiently weak, but WiFi signal strengths are high. 

As defined in Equation (1), the probability of being present indoors combines the observations of 

GPS and WiFi: 

 (1) 

where ω∈ [0,1] is the normalization weight of the indoor probability derived from GPS observation Pg 

(X1 | Yg, Zg), which is estimated based on the GPS signal-to-noise ratio Yg and the number of visible 

satellites Zg. The value of ω is 0.5 by default. However, it is adjustable based on prior knowledge. For 

instance, when a user turns off WiFi on a smartphone, ω can be set as 1. The indoor conditional 

probability Pw (X1 | Yw, Zw) is derived from WiFi observations including the RSSI of the strongest AP 

Yw, and the number of visible APs Zw . Probability lookup tables are generated for retrieving the 

probability based on the GPS and WiFi observations. The probability of being present outdoors can be 

calculated as follows: 

 (2) 

Considering the battery capacity limitation of a smartphone, it is a wise option to turn off 

unnecessary navigation sensors or decrease the sampling rate of a sensor in the procedure of seamless 

positioning. For instance, we suggest using a lower WiFi scanning rate in outdoor environments and 

suspending GPS indoors. 

3.2. Fingerprinting Based Wireless Positioning 

For indoor positioning, we adopt the fingerprinting approach of WiFi positioning. Received signal 

strength indicators (RSSIs) are the basic observables in this approach. The process consists of a 

training phase and a positioning phase. During the training phase, a radio map of probability 

distributions of the received signal strength is constructed for the targeted area. The targeted area is 

divided into a grid, and the central point of each cell in the grid is referred to as a reference point. The 

probability distribution of the received signal strength at each reference point is represented by a 

Weibull function [6,9], and the parameters of the Weibull function are estimated with the limited 

number of training samples. 

1 1 1( ) ( | , ) (1 ) ( | , )g g g w w wP X P X Y Z P X Y Z     

2 1( ) 1 ( )P X P X 
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During the positioning phase, the current location is determined using the measured RSSI 

observations in real-time and the constructed radio map. The Bayesian theorem and Histogram 

Maximum Likelihood algorithm are used for positioning [45,46]. 

Given the RSSI measurement vector     = {O1, O2… Ok} from APs, the problem is to find the 

location l with the conditional probability P(l|   ) being maximized. Using the Bayesian theorem: 

 (3) 

where P(    |l)is the probability of observing RSSI vector given a location l, also known as 

the likelihood, P(l)  is the prior probability of a location l before observing , and P(    ) is the marginal 

likelihood which indicates the probability of obtaining a given RSSI measurement vector    . In this 

study, P(   ) is constant for all l. Therefore, Equation (3) can be reduced to: 

 (4) 

We assume that the mobile device has equal probability to be located at each reference point, thus 

P(l) can be considered as constant in this case. Using this assumption, Equation (4) can be simplified to: 

 (5) 

Now it becomes a problem of finding the maximum conditional probability of: 

 (6) 

where the conditional probability P(On|l) is derived from the RSSI distribution stored in the  

fingerprint database. 

4. Motion Recognition 

Motion, as another simple contextual descriptor in the Context Pyramid, can be detected by motion 

recognition methods. The possible motion states vary in different applications. Common motion states 

include sitting, standing, standing with tiny movements, fast walking, walking slowly, sharp turning, 

spot turning (a.k.a U-turning), gradient turning, running, using stairs, using an elevator, falling down, 

lying, and driving. The motion states can be further constrained in a particular use case. Given motion 

features, diverse classifiers can be applied for motion recognition. Feature selection and motion 

classification will be discussed in the following two subsections. 

4.1. Feature Selection 

This paper limits the use case to an office scenario and the applied motion states are defined as 

Table 1. In order to distinguish the above motion states, we currently retrieve the raw sensor data from 

accelerometers, gyroscope, and magnetometers built in a smartphone. The features listed in Table 2 are 

studied in this research. Raw data from a tri-axis accelerometer {ax,ay,az}, gyroscope {ωx,ωy,ωz}, and 

magnetometer {hx,hy,hz} of a smartphone are collected, and physical parameters such as acceleration a, 
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linear acceleration |a
l
|, horizontal acceleration ah, vertical acceleration av, angular velocity |ω|, heading 

h, and so on, are calculated from the raw sensor measurements. 

Table 1. Motion state definition. 

State Definition 

M1 Sitting. 

M2 Normal walking. 

M3 Fast walking. 

M4 Standing, this might have some tiny movements. 

M5 Sharp turning (heading change: 90° < θ ≤ 270°). 

M6 Gradient turning (heading change: −90° < θ ≤ 90°). 

Table 2. Feature definition. 

Features Definition Applied Physical Parameters Raw Sensor Data 

μ Mean   

σ2 Variance   

m Median   

IQR=Q3-Q1 
Interquartile  

range (IQR) 

  

 Skewness   

 Kurtosis   

 

Difference of two 

successive 

measurements 

  

f1st 1st dominant frequency   

f2nd  2nd dominant frequency   

 
Amplitude of the 1st 

dominant frequency 

  

 

Amplitude of the 2nd 

dominant frequency 
  

 
Amplitude scale of two 

dominant frequencies 
  

 

Difference between two 

dominant frequencies 
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Thirteen features from the time domain and frequency domain are applied to the above physical 

parameters. The sequential forward selection (SFS) algorithm [47–49] is adopted for feature selection, 

and Decision Tree (DT), Linear Discriminant Analysis (LDA), and LS-SVM (Least Square-Support 

Vector Machines) are used as classifiers in the criterion function of SFS. The subset of features 

  
  
 

   
  
 

      
    

    
       is selected for use in a SVM classifier, which achieves the highest accuracy 

rate of 92.9%. The algorithm details of LS-SVM classification are described in the below subsection. 

4.2. Classification 

A supervised learning method is adopted for motion recognition. Classification algorithms such as 

DT, LDA, and LS-SVM are investigated in this research. After comparing these classifiers, LS-SVM 

is finally applied in this work because of the high accuracy of the recognition rate. Using a least 

squares loss function and replacing the inequality constraints with equality constraints, LS-SVM 

tackles linear systems instead of solving convex optimization problems in standard support vector 

machines (SVM), which reduces the complexity of computation [50]. In the training phase, the  

LS-SVM classifier constructs a hyperplane in a high-dimensional space aiming to separate the data 

according to the different classes. This data separation should occur in such a way that the hyperplane 

has the largest distance to the nearest training data points of any class. These particular training data 

points define the so-called margin [51,52]. These parameters can be found by solving the following 

optimization problem having a quadratic cost function and equality constraints: 

 (7) 

subject to [51]: 

 (8) 

with e = [e1∙∙∙eN]
T

 
being a vector of error variables to tolerate misclassifications, sign function  

y∈{−1,+1}, φ(•): ℝd
→ℝdh

 the mapping from the input space into a high-dimensional feature space of 

dimension dh, ω a vector of the same dimension as φ(•), γ is a positive regularization parameter, 

determining the trade-off between the margin size maximization and the training error minimization. 

The term b is the bias. In this equation, the standard SVM formulation is modified using a least  

squares loss function with error variables ei and replacing the inequality constraints with equality 

constraints [51,52]. The Lagrangian for the problem in Equations (7) and (8) is [15,52]: 

 (9) 

where α ∈ ℝ are the Lagrange multipliers, also support values. 

Taking the conditions for optimality, we set: 

1

1 1
arg min ( , ) arg min

2 2

N
T
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 (10) 

Whereas the primal problem is expressed in terms of the feature map, the linear optimization 

problem in the dual space is expressed in terms of the kernel function [51,52]: 

 
(11) 

where y = [y1∙∙∙yN]
T
 ,

 
α = [α1∙∙∙αN]

T

 
,
 
1n = [1∙∙∙1]

T
1 × N 

and Ω ∈ ℝN × N
 is a matrix with elements  

Ωij = yiyj φ(xi)
T
φ(xj), with i, j = 1, ..., N. Given an input vector x, the resulting LS-SVM classifier in the 

dual space is [50]: 

 (12) 

where K(x,xi) = φ(x)
T
φ(xi) is a positive definite kernel matrix. The support values αi are proportional to 

the error of the corresponding training data points. This implies that usually every training data point is 

a support vector and no sparseness property remains in the LS-SVM formulation. Note that high 

support values introduce a high contribution of the data point to the decision boundary [51]. The choice 

of the regularization parameter and the kernel hyperparameter δ in case of an RBF kernel, is out of the 

scope for discussion in this paper. Hospodar gives an example of the kernel parameters selection in [50]. 

5. Human Behavior Modeling Based on LoMoCo Model 

Modeling human behavior has great complexity, due to the wide range of activities that humans can 

undertake and due to the difficulties in systematically classifying these activities [15]. The approach 

taken in this research is to simplify the human behavior modeling using a Location-Motion-Context 

(LoMoCo) model which combines personal location information and motion states to infer a 

corresponding context based on Bayesian reasoning. 

5.1. LoMoCo Model 

Given a specific context, a person always performs movements with some particular patterns. For 

instance, an employee usually sits in a break room while taking a break. He/she most likely stands in 

front of a coffee machine and shortly walks back to the office in a context of fetching coffee. In this 

research, we determine a context based on a LoMoCo model shown in Figure 5. In the LoMoCo 

model, a context (Co) is represented by location patterns (Lo) and motion patterns (Mo). Assuming 

that all the target contexts occur in n significant locations, we denote Ln(ti) as a context that occurs at 
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Ln 
at the time epoch ti. Pl(n) denotes the density of the context that occurs at the location n. A location 

pattern (Lo) consists of the probabilities of all the possible locations. Similarly, motion patterns (Mo) 

include a set of probabilities for each possible motion state. Mk(tj) indicates that a context includes a 

motion state Mk 
of the time epoch tj. 

Figure 5. LoMoCo Model. 

 

5.2. Bayes Inferring 

In order to infer the context, the LoMoCo model in this paper is represented using Bayesian 

reasoning, which can not only determine the context but also provide with the probability of a 

determined class. The classifier of LoMoCo model is designed based on the Bayes rule and trained by 

supervised learning. In the training phase, we wish to approximate an unknown target function P(Y|X), 

where Y is the context predefined, and X={x1,x2…xk} is a vector containing observed features which 

are all conditionally independent of one another, given Y. Applying Bayes’ rule, we have: 

 
(13) 

Further, we get: 

 (14) 

where yi denotes the ith possible context for Y, and the summation in the denominator is over all legal 

values of the context variable Y. In the training phase, we use the training data to estimate P(X|Y = yi) 

and P(Y = yi) which are utilized to determine P(Y = yi|X = Xz) 
for any new vector instance Xz. For the 

classification case, we are only interested in the most probable value of Y, so the problem becomes: 
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 (15) 

which simplifies to the following because the denominator does not depend on a context yi : 

 (16) 

In the LoMoCo model, the feature vector is suggested using observations with location and motion 

state combined, where X = {Pl(1), Pl (2)… Pl (n), Pm (1), Pm (2)… Pm (k)}. In the case without motion 

or location observations, feature vector can be only location patterns where X = {Pl(1), Pl (2)… Pl (n)} or 

motion patterns where X = {Pm (1), Pm (2)… Pm (k)}. Pl (n) and Pm (k) are respectively calculated as: 

 (17) 

 (18) 

where the # D{c}operator returns the number of samples in the set D that satisfy the condition c, and 

|D| is the total number of samples in the set D. 

6. Experimental Results 

In order to demonstrate the proposed approach, we set up a test environment on the first floor of the 

Finnish Geodetic Institute (FGI), as shown in Figure 6. Positioning tests and motion recognition tests 

were performed in this environment to validate the positioning algorithms and motion recognition 

methods proposed for determining the Simple Contextual Descriptors level in Figure 2. Then, an 

employee-centric experiment was designed to verify whether we can achieve the Activity-Level 

Descriptors layer of the pyramid in Figure 2 using the LoMoCo model. Taking into account the battery 

capacity limitation of a smartphone, we conducted a battery drain test at last. 

Figure 6. Test environment. 
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6.1. Positioning Results 

This section presents the results of the above mentioned ubiquitous positioning technologies. 

Because outdoor positioning performance using GPS has been thoroughly discussed in many 

publications, for instance [43], we will mainly focus on the indoor positioning performance in this 

section. The test was conducted in the FGI office where forty WiFi access points are distributed among 

all the three floors and thirty of them might be detected on the first floor. Among all reference points, 

at least one and at most fourteen access points can be simultaneously observed. An Android WiFi 

fingerprint collection application was developed on a Samsung Galaxy Nexus. Using that application, 

totally 43 reference points were selected for generating the radio map for the test area. The distance 

between two adjective reference points is around 3–5 meters. Taking account into the factors which 

might affect on RSSI measurements such as the variance of RSSI observations [45], inferences from 

other radio systems [53], and the disturbance of human body, sixty samples were collected for each 

reference point from four directions during approximately 1 minute. Each direction includes about 15 

samples. During the positioning tests, a tester randomly walked throughout the test zone with a built-in 

audio recorder in the same phone to provide a positioning reference: the tester made a mark by 

speaking out the name of a reference point while passing by it. In total 560 samples were collected for 

verifying the positioning accuracy. The entire test area is classified into three types of space: open 

space, corridor, and semi-open space. Open space is a large space without obstacles, such as the main 

lobby and break room shown in Figure 6. The corridor environment refers to a narrow hallway where a 

person usually is oriented in one of only two directions. Semi-open space is an open space with some 

obstacles, such as furniture or office partitions. 

Finally, the statistical analysis results are listed in Table 3. Positioning results indicate 1.9 meters 

errors in corridors, 2.7 meters errors in the semi-open space, and 3.5 meters errors in the main lobby 

and break room. The above accuracies are high enough for room-level activity recognition. 

Table 3. Positioning results (Unit: Meter). 

Environment Open Space Corridors Semi-open 

Mean error 3.5 1.9 2.7 

RMSE 4.5 3.0 3.3 

Maximum error 9.5 6.0 7.0 

Minimum error 0 0 0 

6.2. Motion Recognition Results 

The proposed motion recognition method is verified by a set of dedicated tests. Note that a phone 

can be placed at different positions on a user’s body, which impacts the sensor data patterns. In order 

to reduce the complexity, the tester always kept the phone in his pants pocket and the orientation of the 

phone was as shown in Figure 7. Provided with a sensor data collection application (developed by the 

authors), four testers were involved in the sensor data collection during five days. In the FGI office 

building, each tester performed six motion states which are listed in Table 1. For each tester,  

more than 1,200 samples were collected. Thirteen types of features were extracted from the built-in 

accelerometers, gyroscope, and magnetometers in a smartphone. 
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Figure 7. The phone in pants pocket. 

 

Six motion states are detected by a Least Squares Support Vector Machines (LS-SVM) 

classification algorithm. The results indicate that the motion states are recognized with an accuracy 

rate of up to 92.9% for the test cases employed in this study. The confusion matrix in Table 4 shows 

that major confusions existed between sharp turning (M5) and gradient turning (M6) because these two 

motion states are processes depending on both the heading change and heading change rate. For 

example, if a user’s heading changed 180 degrees in a second, the corresponding motion state will be 

determined as sharp turning. However, if the user changes his/her heading in more than two seconds, 

the motion state might be considered as gradient turning. 

Table 4. Confusion matrix for the motion recognition from LS-SVM classifier (Unit: %). 

 M1 M2 M3 M4 M5 M6 

M1 99.5 0.5 0 0 0 0 

M2 0 96.0 4.0 0 0 0 

M3 0 0 100.0 0 0 0 

M4 0 0 0 100.0 0 0 

M5 0 0 0 16.7 64.8 18.5 

M6 0 0 0 1.9 31.5 66.7 

We also found that there are some misunderstandings between standing (M4) and sharp turning 

(M5). The reason is related to the training phase, where testers started a sharp turn while standing 

stationary, and also finished the sharp turning with a standing state. Thus, it was hard to label the sharp 

turning samples from the entire training data to only include the sharp turn time segment. As a result, 

even though a motion data set is labeled as a sharp turning state, it could include some standing states. 

Despite the confusion in the turning states, the other motion states, such as sitting, normal walking, 

fast walking, standing, achieve a perfect success rate in the tests, and therefore can be used effectively 

for context determination. 

6.3. Human Behavior Modeling Results 

Activity-Level Descriptors in the Context Pyramid vary because the activity definitions and 

scenarios are diverse. Each different activity has its own features. As a result, it is very difficult to 

develop a universal model to classify activities in the Activity-Level Descriptors layer. However, 
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location and motion are two fundamental elements of human behavior, which can be used to infer 

some human activities. For instance, sitting in an office might be translated as working, standing 

beside of a coffee machine could be considered as fetching a drink. Therefore, we proposed the 

LoMoCo model in Section 5. In order to demonstrate the usability of this model, we narrow down the 

scope of human activities to an employee’s behavior with dedicated contexts in a workplace scenario 

as shown in Figure 6. The goal of the tests is to determine the purpose of an employee using the break 

room after he/she left his/her office. To simplify the problem, we define six contexts/activities in the 

Activity-Level Descriptors: 

1. C1: fetching coffee. The tester leaves his/her office and travels through the corridors 

and main lobby. Then, he/she fetches coffee from a coffee machine located in the 

break room. Finally, he/she returns to his/her office as long as his/her coffee is ready. 

2. C2: fetching water. The tester leaves his/her office and travels through the corridors, 

main lobby, and break room. Then, he/she fetches water from a dispenser located in 

the kitchen. Finally, he/she returns to his/her office as long as his/her water is ready. 

3. C3: taking a break. The tester leaves his/her office and travels through the corridors 

and main lobby. Then he/she sits in the break room for a while. Finally, he/she returns 

to his/her office after a break. 

4. C4: having lunch. The tester leaves his/her office and travels through the corridors, 

main lobby, and break room. Then, he/she prepares his/her food in the kitchen and has 

his/her lunch in the break room. Finally, he/she returns to his/her office after lunch. 

5. C5: working. The tester sits in his/her office in most of the time. However, this context 

might also include some brief standing, turning, walking motion states. 

6. C6: undefined context. Contexts which are not defined in the above are classified as 

unknown context. 

Figure 8 gives an example of the motion states sequence occurring in a fetching coffee context. The 

tester firstly left the office while performing some turnings, and walked to the coffee machine. He/she 

stood in front of the coffee machine while fetching coffee, and walked back to his/her office after the 

coffee was ready. The example ended up with the tester sitting back in the office. 

Figure 8. Motion states in fetching coffee context (C1). 

 
0 20 40 60 80 100 120 140 160 180

1

2

3

4

5

6

Samples [s]

M
o
ti
o
n
 S

ta
te

 

 

Standing

Normal

walking

Normal

walking

Grandiet

turning

Sitting

Sharp

turning

Fast

walking



Sensors 2013, 13 1418 

 

 

In this test scenario, we only require room-level accuracy location. Therefore, we use the ID of a 

location to where the estimated reference point belongs. We organize the reference points in the test 

area, as shown in Figure 9, into significant locations as shown in Table 5: 

Figure 9. Graph of reference points. 

 

Table 5. Location definition. 

ID Location Reference Points ID 

L1 Office R34-1~R37-1, R40-1~R43-1 

L2 Corridors R13-1~R14-1, R22-1~R27-1, R33-1, R49-1~R52-1 

L3 Main lobby R15-1~R21-1, R44-1~R48-1 

L4 Break room R55-1~R61-1 

L5 Kitchen R62-1~R63-1 

Using Equation (17) in the LoMoCo model, the probability of each location is calculated for each 

context/activity. On the other hand, the probability of each motion state is also counted by employing 

Equation (18). During the training phase, twenty context samples covering four samples for each 

context except C6 were collected for the model training. In the testing phase, four testers performed 

sixty-seven contexts including fourteen C1, fifteen C2, ten C4, eight C3, and fifteen C5 context 

samples respectively, and five abnormal contexts which are not predefined in the LoMoCo model. The 

abnormal contexts included two contexts of fetching papers from a printer, two contexts of taking 

break in the lobby and the last one was using toilet. By applying the proposed LoMoCo model, we 

obtain the results as follows. Tables 6 and 7 show the results if only location features or motion 

features, respectively, are applied in the LoMoCo model. In the case of only location features applied, 

85.5% of contexts can be correctly detected. 28.6% and 21.4% C1 contexts are mistaken as C3 and C2 

respectively because those contexts have similar location patterns. Furthermore, as shown in Table 7, 
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similar motion patterns introduce confusions between C1 and C2, C3 and C4, C3 and C5 as well. If we 

simultaneously take location features and motion features into account, as shown in Table 8, 90.3% of 

all the contexts can be correctly recognized. Abnormal contexts are classified as similar predefined 

contexts, for instance, the contexts of taking break in the lobby are recognized as C3, fetching a paper 

from a printer is labeled as fetching water or coffee. Using a toilet which is close to the office is 

labeled as the context of working. 

Table 6. Confusion matrix for the context recognition with location features (Unit: %). 

 C1 C2 C3 C4 C5 C6 

C1 50 21.4 28.6 0 0 0 

C2 0 100 0 0 0 0 

C3 10.0 0 90.0 0 0 0 

C4 0 0 12.5 87.5 0 0 

C5 0 0 0 0 100 0 

C6 0 100 0 0 0 0 

Table 7. Confusion matrix for the context recognition with motion features (Unit: %). 

 C1 C2 C3 C4 C5 C6 

C1 28.6 64.3 7.1 0 0 0 

C2 0 100 0 0 0 0 

C3 0 0 100 0 0 0 

C4 0 0 12.5 87.5 0 0 

C5 0 0 6.7 0 93.3 0 

C6 0 20.0 40.0 0 40.0 0 

Table 8. Confusion matrix for LoMoCo model (Unit: %). 

 C1 C2 C3 C4 C5 C6 

C1 64.3 35.7 0 0 0 0 

C2 0 100 0 0 0 0 

C3 0 0 100 0 0 0 

C4 0 0 12.5 87.5 0 0 

C5 0 0 0 0 100 0 

C6 20.0 20.0 40.0 0 20.0 0 

6.4. Battery Drain Analyzing 

Considering that the battery capacity is still limited, we conducted a 3.5 hours test to analyze the 

battery drain on a Samsung Nexus phone equipped with a 1,750 mAh Li-ion battery. A  

smartphone-based cognitive application as shown in the left image of Figure 4, which sampled the 

motion sensors around 90 Hz and scanned WiFi and GPS at about 1 Hz in the Raw Sensor Data layer 

of the Context Pyramid in Figure 2, was used for testing. The smartphone screen was kept off during 

the test. As shown in Figure 10, we started the test when 60% battery was left. 
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Figure 10. Battery drain on a smartphone. 

 

After 41 minutes with only motion sensors enabled, 2% battery was consumed. The battery was 

drained even faster while WiFi scanning was on. Figure 10 indicates 10% battery used in 50 minutes. 

The most energy-consuming case was turning on motion sensors, WiFi, and GPS insight of a 

smartphone simultaneously and the battery drain rate was 27.5%·h
−1

 in such circumstance. Therefore, 

GPS is suggested turning off or lowering the sampling rate indoors. With a fully charged battery and 

without any extra applications running on a smartphone, the cognitive application would constantly 

work 8.3 hours if only motion sensors and WiFi are turned on. 

7. Conclusions 

This research investigates context sensing, modeling human behavior, and developing a new 

architecture for cognitive phone platform. We combine the latest positioning technologies and sensors 

to capture human movements in natural environments and use the movements to study human 

behavior. Contexts in this research are abstracted as a Context Pyramid which includes six levels: Raw 

Sensor Data, Physical Parameter, Features/Patterns, Simple Contextual Descriptors, Activity-Level 

Descriptors, and Rich Context. To achieve understanding of the Context Pyramid on a cognitive 

phone, three key technologies are implemented: ubiquitous positioning, motion recognition, and 

human behavior modeling. Preliminary tests indicate that we have successfully achieved the  

Activity-Level Descriptors level with a Location-Motion-Context (LoMoCo) model with a correct rate 

of 90.3%. Location accuracy of the proposed solution is up to 1.9 meters errors in corridor 

environments and 3.5 meters errors in open space. Test results also indicate that the motion states are 

recognized with an accuracy rate of up to 92.9%. 

Despite the fact that the motion recognition solution proposed in this paper provides a high correct 

motion recognition rate, the motion definition and feature selection vary from case to case. For 

instance, even though it is easy to confuse sharp turning with gradient turning in motion recognition, it 

will not effect on the classification if we merge them as one turning state in some cases. Therefore, in 

the future, we will investigate the motion and feature selections to find out the most effective motion 
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states definition and features for context classification. Undefined contexts are not able to handle in the 

proposed LoMoCo model yet. Therefore, we will improve the model to detect abnormal behaviors. In 

the current stage, we successfully reach the Activity-Level Descriptors for individuals. Social activities 

with a group of people will be studied in the near future. Additionally, in the next step of this research 

work, we will focus on more complex human behavior modeling to reach the Rich Context level. The 

psychological state and social media context will be considered in future work. 
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