209 research outputs found

    Drought impacts on ecosystem functions of the U.S. National Forests and Grasslands: Part I evaluation of a water and carbon balance model

    Get PDF
    Understanding and quantitatively evaluating the regional impacts of climate change and variability (e.g., droughts) on forest ecosystem functions (i.e., water yield, evapotranspiration, and productivity) and services (e.g., fresh water supply and carbon sequestration) is of great importance for developing climate change adaptation strategies for National Forests and Grasslands (NFs) in the United States. However, few reliable continental-scale modeling tools are available to account for both water and carbon dynamics. The objective of this study was to test a monthly water and carbon balance model, the Water Supply Stress Index (WaSSI) model, for potential application in addressing the influences of drought on NFs ecosystem services across the conterminous United States (CONUS). The performance of the WaSSI model was comprehensively assessed with measured streamflow (Q) at 72 U.S. Geological Survey (USGS) gauging stations, and satellite-based estimates of watershed evapotranspiration (ET) and gross primary productivity (GPP) for 170 National Forest and Grassland (NFs). Across the 72 USGS watersheds, the WaSSI model generally captured the spatial variability of multi-year mean annual and monthly Q and annual ET as evaluated by Correlation Coefficient (R = 0.71–1.0), Nash–Sutcliffe Efficiency (NS = 0.31–1.00), and normalized Root Mean Squared Error (0.06–0.48). The modeled ET and GPP by WaSSI agreed well with the remote sensing-based estimates for multi-year annual and monthly means for all the NFs. However, there were systemic discrepancies in GPP between our simulations and the satellite-based estimates on a yearly and monthly scale, suggesting uncertainties in GPP estimates in all methods (i.e., remote sensing and modeling). Overall, our assessments suggested that the WaSSI model had the capability to reconstruct the long-term forest watershed water and carbon balances at a broad scale. This model evaluation study provides a foundation for model applications in understanding the impacts of climate change and variability (e.g., droughts) on NFs ecosystem service functions

    Afforestation and Reforestation: Drivers, Dynamics, and Impacts

    Get PDF
    Afforestation/reforestation (or forestation) has been implemented worldwide as an effective measure towards sustainable ecosystem services and addresses global environmental problems such as climate change. The conversion of grasslands, croplands, shrublands, or bare lands to forests can dramatically alter forest water, energy, and carbon cycles and, thus, ecosystem services (e.g., carbon sequestration, soil erosion control, and water quality improvement). Large-scale afforestation/reforestation is typically driven by policies and, in turn, can also have substantial socioeconomic impacts. To enable success, forestation endeavors require novel approaches that involve a series of complex processes and interdisciplinary sciences. For example, exotic or fast-growing tree species are often used to improve soil conditions of degraded lands or maximize productivity, and it often takes a long time to understand and quantify the consequences of such practices at watershed or regional scales. Maintaining the sustainability of man-made forests is becoming increasingly challenging under a changing environment and disturbance regime changes such as wildland fires, urbanization, drought, air pollution, climate change, and socioeconomic change. Therefore, this Special Issue focuses on case studies of the drivers, dynamics, and impacts of afforestation/reforestation at regional, national, or global scales. These new studies provide an update on the scientific advances related to forestation. This information is urgently needed by land managers and policy makers to better manage forest resources in today’s rapidly changing environments

    Focused electron-beam-induced deposition for fabrication of highly durable and sensitive metallic AFM-IR probes

    Get PDF
    We report on the fabrication of metallic, ultra-sharp atomic force microscope tips for localized nanoscale infrared (IR) spectrum measurements by using focused electron-beam-induced deposition of platinum or tungsten. The tip length can be controlled by changing the duration time of the electron beam. Probes of 12.0 ± 5.0 nm radius-of-curvature can be routinely produced with high repeatability and near-100% yield. The near-field-enhancement appears stronger at the extremity of the metallic tip, compared with commercial pristine silicon-nitride probe tip. Finally, the performance of the modified metallic tips is demonstrated by imaging PVDF and PMMA thin films, which shows that spatial resolution is greatly enhanced. In addition, the signal intensity of the localized nanoscale IR spectrum is increased offering greater sensitivity for chemical IR imaging

    Upscaling key ecosystem functions across the conterminous United States by a water-centric ecosystem model

    Get PDF
    We developed a water-centric monthly scale simulation model (WaSSI-C) by integrating empirical water and carbon flux measurements from the FLUXNET network and an existing water supply and demand accounting model (WaSSI). The WaSSI-C model was evaluated with basin-scale evapotranspiration (ET), gross ecosystem productivity (GEP), and net ecosystem exchange (NEE) estimates by multiple independent methods across 2103 eight-digit Hydrologic Unit Code watersheds in the conterminous United States from 2001 to 2006. Our results indicate that WaSSI-C captured the spatial and temporal variability and the effects of large droughts on key ecosystem fluxes. Our modeled mean (±standard deviation in space) ET (556 ± 228 mm yr−1) compared well to Moderate Resolution Imaging Spectroradiometer (MODIS) based (527 ± 251 mm yr−1) and watershed water balance based ET (571 ± 242 mm yr−1). Our mean annual GEP estimates (1362 ± 688 g C m−2 yr−1) compared well (R2 = 0.83) to estimates (1194 ± 649 g C m−2 yr−1) by eddy flux-based EC-MOD model, but both methods led significantly higher (25–30%) values than the standard MODIS product (904 ± 467 g C m−2 yr−1). Among the 18 water resource regions, the southeast ranked the highest in terms of its water yield and carbon sequestration capacity. When all ecosystems were considered, the mean NEE (−353 ± 298 g C m−2 yr−1) predicted by this study was 60% higher than EC-MOD\u27s estimate (−220 ± 225 g C m−2 yr−1) in absolute magnitude, suggesting overall high uncertainty in quantifying NEE at a large scale. Our water-centric model offers a new tool for examining the trade-offs between regional water and carbon resources under a changing environment

    Characterization of Shewanella sp. Isolated from Cultured Loach Misgurnus anguillicaudatus

    Get PDF
    Shewanella infection of fish has become a significant problem in aquaculture. In September 2014, a disease was seen in cultured loach (Misgurnus anguillicaudatus) in Xuzhou, central China. A gram-negative bacillus was isolated from the diseased loaches and was tentatively named strain MS1, which was then identified as Shewanella sp. by physiological and biochemical characteristics analysis. The strain MS1 showed highest 16S rRNA sequence identities (98.93%, 98.87%) with the latest two species listed (Shewanella sp. MR7, Shewanella sp. MR4). The phylogenetic tree constructed on the basis of 16S rRNA gene sequences strongly indicated that the strain MS1 is most closely related to the new Shewanella strains MR7 and MR4. The isolate MS1 was confirmed as the pathogen of the infected loaches by experimental reinoculation. The strain was susceptible to most antimicrobial agents tested, but resistant to glycopeptides (vancomycin, teicoplanin) and lincosamide (lincomycin, clindamycin). This is the second report on Shewanella sp. isolated from the diseased loach

    Effect of Lipopolysaccharide (LPS) and Outer Membrane Protein (OMP) Vaccines on Protection of Grass Carp (Ctenopharyngodon idella) against Aeromonas hydrophila

    Get PDF
    Abstract The gram-negative bacterium, Aeromonas hydrophila, causes high mortality and economic losses to the aquaculture industry. We investigated whether lipopolysaccharide (LPS) or outer membrane proteins (OMP) from A. hydrophila can enhance specific and/or non-specific immunity in grass carp (Ctenopharyngodon idella). Fish were injected intraperitoneally with LPS, OMP, or formalin-killed cells (FKC) from A. hydrophila. The control group was injected with phosphate buffered saline (PBS). All three antigens elicited strong immune responses. Respiratory burst and phagocytic activities in head kidney leukocytes and serum lysozyme activity peaked on day 21 after vaccination. Heavy chain gene transcription of immunoglobulin M and Z in the head kidney in vaccinated fish peaked on day 28. Relative percent survival was 83.3%, 72.2%, and 55.6% in the LPS, OMP, and FKC groups, respectively, but only 10% in control fish. Results suggest that LPS and OMP isolated from A. hydrophila can enhance specific immunity, non-specific immunity, and protection against A. hydrophila in fish. Thus, LPS and OMP could be important antigens for development of vaccines to control diseases caused by A. hydrophila in grass carp and other aquatic animals

    Toxicological safety assessment of a water extract of Lithocarpus litseifolius by a 90-day repeated oral toxicity study in rats

    Get PDF
    Lithocarpus litseifolius although known as “Sweet Tea” (ST), has been traditionally accepted as a daily beverage and used as a folk medicine in southern China with little understanding of its potential toxicity. This study evaluated the safety of a water extract of ST by a subchronic toxicity study in Sprague-Dawley rats. A total of 80 rats were randomized divided into 4 groups with 10 males and 10 females in each group, treated with 2000, 1,000, 500 and 0 mg/kg body weight of ST extract by gavage for 90 days, respectively. The results of the study showed that ST extract did not induce treatment-related changes in the body and organ weight, food intake, blood hematology and serum biochemistry, urine indices, and histopathology in rats. The NOAEL of ST extract was observed to be 2000 mg/kg/day for rats of both sexes. These results indicated that ST extract was of low toxicity in the experimental conditions of the current study and had the potential for application in food-related products

    Comparative Study on Properties of Polylactic Acid Nanocomposites with Cellulose and Chitin Nanofibers Extracted from Different Raw Materials

    Get PDF
    Polylactic acid (PLA) was reinforced with ultralong cellulose and chitin nanofibers extracted from four raw materials by extrusion. The mechanical, rheological, thermal, and viscoelastic performances of four nanocomposites were comparatively studied in detail. The results showed that fibrillation of poplar was much easier than that of cotton, and fibrillation of crab shell was relatively hard as compared to prawn shell. The poplar CNFs/PLA composite exhibited the best mechanical properties among four nanocomposites due to the highest aspect ratio of nanofibers, while both the cotton CNFs/PLA composite and the crab shell CHNFs/PLA composite had low mechanical strength due to the relatively low aspect ratio. FE-SEM images showed that the ultralong nanofibers were uniformly dispersed in PLA matrix for all four samples with the water preblending method. The CTE values of the nanocomposites with 40 wt% nanofibers extracted from poplar, cotton, crab shell, and prawn shell were 69.5 × 10−6 K−1, 79.6 × 10−6 K−1, 77.2 × 10−6 K−1, and 75.3 × 10−6 K−1, respectively. All the results indicated that the aspect ratio of the nanofibers has a great influence on the performance of the composites, irrespective of the composites prepared by cellulose or chitin
    corecore