1,213 research outputs found
Fabrication and Electro-optic Properties of MWCNT Driven Novel Electroluminescent Lamp
We present a novel, cost-effective and facile technique, wherein multi-walled
carbon nano-tubes (CNTs) were used to transform a photoluminescent material to
exhibit stable and efficient electroluminescence (EL) at low-voltages. As a
case study, a commercially available ZnS:Cu phosphor (P-22G) was combined with
a very low concentration of CNTs dispersed in ethanol and its alternating
current driven electroluminescence (AC-EL) is demonstrated. The role of CNTs
has been understood as a local electric field enhancer and facilitator in the
hot carrier injection inside the ZnS crystal to produce EL in the hybrid
material. The mechanism of EL is discussed using an internal field emission
model, intra-CNT impact excitation and the recombination of electrons and holes
through the impurity states.Comment: 9 Figure
Obtaining reliable information from minute amounts of RNA using cDNA microarrays
BACKGROUND: High density cDNA microarray technology provides a powerful tool to survey the activity of thousands of genes in normal and diseased cells, which helps us both to understand the molecular basis of the disease and to identify potential targets for therapeutic intervention. The promise of this technology has been hampered by the large amount of biological material required for the experiments (more than 50 μg of total RNA per array). We have modified an amplification procedure that requires only 1 μg of total RNA. Analyses of the results showed that most genes that were detected as expressed or differentially expressed using the regular protocol were also detected using the amplification protocol. In addition, many genes that were undetected or weakly detected using the regular protocol were clearly detected using the amplification protocol. We have carried out a series of confirmation studies by northern blotting, western blotting, and immunohistochemistry assays. RESULTS: Our results showed that most of the new information revealed by the amplification protocol represents real gene activity in the cells. CONCLUSION: We have confirmed a powerful and consistent cDNA microarray procedure that can be used to study minute amounts of biological tissue
Remarks on 't Hooft's Brick Wall Model
A semi-classical reasoning leads to the non-commutativity of the space and
time coordinates near the horizon of Schwarzschild black hole. This
non-commutativity in turn provides a mechanism to interpret the brick wall
thickness hypothesis in 't Hooft's brick wall model as well as the boundary
condition imposed for the field considered. For concreteness, we consider a
noncommutative scalar field model near the horizon and derive the effective
metric via the equation of motion of noncommutative scalar field. This metric
displays a new horizon in addition to the original one associated with the
Schwarzschild black hole. The infinite red-shifting of the scalar field on the
new horizon determines the range of the noncommutativ space and explains the
relevant boundary condition for the field. This range enables us to calculate
the entropy of black hole as proportional to the area of its original horizon
along the same line as in 't Hooft's model, and the thickness of the brick wall
is found to be proportional to the thermal average of the noncommutative
space-time range. The Hawking temperature has been derived in this formalism.
The study here represents an attempt to reveal some physics beyond the brick
wall model.Comment: RevTeX, 5 pages, no figure
Rapidity, azimuthal, and multiplicity dependence of mean transverse momentum and transverse momentum correlations in and collisions in =22 GeV
Rapidity, azimuthal and multiplicity dependence of mean transverse momentum and transverse momentum correlations of charged particles is studied in pi/sup positive and K/sup positive collisions at 250 GeV/c incident beam momentum. For the first time, it is found that the rapidity dependence of the two-particle transverse momentum correlation is different from that of the mean transverse momentum, but both have similar multiplicity dependence. In particular, the transverse momentum correlations are boost invariant. This is similar to the recently found boost invariance of the charge balance function. A strong azimuthal dependence of the transverse momentum correlations originates from the constraint of energy-momentum conservation. The results are compared with those from the PYTHIA Monte Carlo generator. The similarities to and differences with the results from current heavy ion experiments are discussed
Impact of viral replication inhibition by entecavir on peripheral T lymphocyte subpopulations in chronic hepatitis B patients
<p>Abstract</p> <p>Background</p> <p>To investigate dynamic fluctuations of serum viral load and peripheral T-lymphocyte subpopulations of chronic hepatitis B patients and their correlation during entecavir therapy.</p> <p>Methods</p> <p>Fifty-five patients received entecavir 0.5 mg/d therapy. Serum HBV DNA load was measured by Real-Time-PCR, and the levels of peripheral T-lymphocyte subpopulations by flow cytometry biweekly, every four weeks and every eight weeks during weeks 1–12, 13–24 and 24–48, respectively. Multilevel modelling was used to analyse the relationship between these variables.</p> <p>Results</p> <p>Of the 55 patients, all HBeAg positive and with detectable HBV DNA, the majority (81.8%) had serum levels of HBV DNA over 10<sup>7 </sup>copies per milliliter. HBV viral load dropped sharply during the first two weeks. In 28 and 43 patients, the level became undetectable from week 24 and 48, respectively. Using pre-therapy level as the reference, a significant decrease in CD8<sup>+ </sup>T cells and increase in CD4<sup>+ </sup>T cells were found from week 12. Both parameters and CD4<sup>+</sup>/CD8<sup>+ </sup>ratio steadily improved throughout the 48 weeks. Multilevel analyses showed that the level of decrement of HBV DNA was associated with the increment of T-lymphocyte activities only in the later period (4–48 week). After 4 weeks of therapy, for each log<sub>10 </sub>scale decrement of HBV DNA, the percentage of CD4<sup>+ </sup>lymphocyte was increased by 0.49 and that of CD8<sup>+ </sup>decreased by 0.51.</p> <p>Conclusion</p> <p>T-lymphocyte subpopulations could be restored partially by entecavir treatment in patients with chronic hepatitis B concurrently with reduction of viremia.</p
Prime Focus Spectrograph (PFS) for the Subaru Telescope: Overview, recent progress, and future perspectives
PFS (Prime Focus Spectrograph), a next generation facility instrument on the
8.2-meter Subaru Telescope, is a very wide-field, massively multiplexed,
optical and near-infrared spectrograph. Exploiting the Subaru prime focus, 2394
reconfigurable fibers will be distributed over the 1.3 deg field of view. The
spectrograph has been designed with 3 arms of blue, red, and near-infrared
cameras to simultaneously observe spectra from 380nm to 1260nm in one exposure
at a resolution of ~1.6-2.7A. An international collaboration is developing this
instrument under the initiative of Kavli IPMU. The project is now going into
the construction phase aiming at undertaking system integration in 2017-2018
and subsequently carrying out engineering operations in 2018-2019. This article
gives an overview of the instrument, current project status and future paths
forward.Comment: 17 pages, 10 figures. Proceeding of SPIE Astronomical Telescopes and
Instrumentation 201
Physical Activity Attenuates the Genetic Predisposition to Obesity in 20,000 Men and Women from EPIC-Norfolk Prospective Population Study
Shengxu Li and colleagues use data from a large prospective observational cohort to examine the extent to which a genetic predisposition toward obesity may be modified by living a physically active lifestyle
Recommended from our members
Biological, clinical and population relevance of 95 loci for blood lipids.
Plasma concentrations of total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and triglycerides are among the most important risk factors for coronary artery disease (CAD) and are targets for therapeutic intervention. We screened the genome for common variants associated with plasma lipids in >100,000 individuals of European ancestry. Here we report 95 significantly associated loci (P < 5 x 10(-8)), with 59 showing genome-wide significant association with lipid traits for the first time. The newly reported associations include single nucleotide polymorphisms (SNPs) near known lipid regulators (for example, CYP7A1, NPC1L1 and SCARB1) as well as in scores of loci not previously implicated in lipoprotein metabolism. The 95 loci contribute not only to normal variation in lipid traits but also to extreme lipid phenotypes and have an impact on lipid traits in three non-European populations (East Asians, South Asians and African Americans). Our results identify several novel loci associated with plasma lipids that are also associated with CAD. Finally, we validated three of the novel genes-GALNT2, PPP1R3B and TTC39B-with experiments in mouse models. Taken together, our findings provide the foundation to develop a broader biological understanding of lipoprotein metabolism and to identify new therapeutic opportunities for the prevention of CAD
Hypoxia-inducible factor-1α gene polymorphisms and cancer risk: a meta-analysis
<p>Abstract</p> <p>Background</p> <p>The results from the published studies on the association between <it>hypoxia-inducible factor -1α </it>(HIF-1α) polymorphisms and cancer risk are conflicting. In this meta-analysis, we aimed to investigate the association between <it>HIF-1α </it>1772 C/T and 1790 G/A polymorphisms and cancer.</p> <p>Methods</p> <p>The meta-analysis for 1772 C/T polymorphism included 4131 cancer cases and 5387 controls, and for 1790 G/A polymorphism included 2058 cancer cases and 3026 controls. Allelic and genotypic comparisons between cases and controls were evaluated. Subgroup analyses by cancer types, ethnicity, and gender were also performed. We included prostate cancer in male subgroup, and female specific cancers in female subgroup.</p> <p>Results</p> <p>For the 1772 C/T polymorphism, the analysis showed that the T allele and genotype TT were significantly associated with higher cancer risk: odds ratio (OR) = 1.29 [95% confidence interval (CI, 1.01, 1.65)], P = 0.04, P<sub>heterogeneity </sub>< 0.00001, and OR = 2.18 [95% CI (1.32, 3.62)], P = 0.003, P<sub>heterogeneity </sub>= 0.02, respectively. The effect of the genotype TT on cancer especially exists in Caucasians and female subjects: OR = 2.40 [95% CI (1.26, 4.59)], P = 0.008, P<sub>heterogeneity </sub>= 0.02, and OR = 3.60 [95% CI (1.17, 11.11)], P = 0.03, P<sub>heterogeneity </sub>= 0.02, respectively. For the 1790 G/A polymorphism, the pooled ORs for allelic frequency comparison and dominant model comparison suggested a significant association of 1790 G/A polymorphism with a decreased breast cancer risk: OR = 0.28 [95% CI (0.08, 0.90)], P = 0.03, P<sub>heterogeneity </sub>= 0.45, and OR = 0.29 [95% CI (0.09, 0.97)], P = 0.04, P<sub>heterogeneity </sub>= 0.41, respectively. The frequency of the <it>HIF-1α </it>1790 A allele was very low and only two studies were included in the breast cancer subgroup.</p> <p>Conclusions</p> <p>Our meta-analysis suggests that the <it>HIF-1α </it>1772 C/T polymorphism is significantly associated with higher cancer risk, and 1790 G/A polymorphism is significantly associated with decreased breast cancer risk. The effect of the 1772 C/T polymorphism on cancer especially exists in Caucasians and female subjects. Only female specific cancers were included in female subgroup, which indicates that the 1772 C/T polymorphism is significantly associated with an increased risk for female specific cancers. The association between the 1790 G/A polymorphism and lower breast cancer risk could be due to chance.</p
- …