388 research outputs found

    DNMT3a in the hippocampal CA1 is crucial in the acquisition of morphine self‐administration in rats

    Get PDF
    Drug‐reinforced excessive operant responding is one fundamental feature of long-lasting addiction‐like behaviors and relapse in animals. However, the transcriptional regulatory mechanisms responsible for the persistent drug‐specific (not natural rewards) operant behavior are not entirely clear. In this study, we demonstrate a key role for one of the de novo DNA methyltransferase, DNMT3a, in the acquisition of morphine self‐administration (SA) in rats. The expression of DNMT3a in the hippocampal CA1 region but not in the nucleus accumbens shell was significantly up‐regulated after 1‐ and 7‐day morphine SA (0.3 mg/kg/infusion) but not after the yoked morphine injection. On the other hand, saccharin SA did not affect the expression of DNMT3a or DNMT3b. DNMT inhibitor 5‐aza‐2‐deoxycytidine (5‐aza) microinjected into the hippocampal CA1 significantly attenuated the acquisition of morphine SA. Knockdown of DNMT3a also impaired the ability to acquire the morphine SA. Overall, these findings suggest that DNMT3a in the hippocampus plays an important role in the acquisition of morphine SA and may be a valid target to prevent the development of morphine addiction. Includes Supplemental informatio

    JMJD3 promotes survival of diffuse large B-cell lymphoma subtypes via distinct mechanisms.

    Get PDF
    JMJD3 (Jumonji domain containing-3), a histone H3 Lys27 (H3K27) demethylase, has been reported to be involved in the antigen-driven differentiation of germinal center B-cells. However, insight into the mechanism of JMJD3 in DLBCL (Diffuse large B-cell lymphoma) progression remains poorly understood. In this study, we investigated the subtype-specific JMJD3-dependent survival effects in DLBCL. Our data showed that in the ABC subtype, silencing-down of JMJD3 inhibited interferon regulatory factor 4 (IRF4) expression in a demethylase activity-dependent fashion. IRF4 reciprocally stimulated expression of JMJD3, forming a positive feedback loop that promoted survival in these cells. Accordingly, IRF4 expression was sufficient to rescue the pro-apoptotic effect of JMJD3 suppression in the ABC, but not in the GCB subtype. In contrast, ectopic overexpression of BCL-2 completely offset JMJD3-mediated survival in the GCB DLBCL cells. In vivo, treatment with siRNA to JMJD3 reduced tumor volume concordant with increased apoptosis in either subtype. This suggests it is a common target, though the distinctive signaling axes regulating DCBCL survival offer different strategic options for treating DLBCL subtypes

    Optical effects of spin currents in semiconductors

    Full text link
    A spin current has novel linear and second-order nonlinear optical effects due to its symmetry properties. With the symmetry analysis and the eight-band microscopic calculation we have systematically investigated the interaction between a spin current and a polarized light beam (or the "photon spin current") in direct-gap semiconductors. This interaction is rooted in the intrinsic spin-orbit coupling in valence bands and does not rely on the Rashba or Dresselhaus effect. The light-spin current interaction results in an optical birefringence effect of the spin current. The symmetry analysis indicates that in a semiconductor with inversion symmetry, the linear birefringence effect vanishes and only the circular birefringence effect exists. The circular birefringence effect is similar to the Faraday rotation in magneto-optics but involves no net magnetization nor breaking the time-reversal symmetry. Moreover, a spin current can induce the second-order nonlinear optical processes due to the inversion-symmetry breaking. These findings form a basis of measuring a pure spin current where and when it flows with the standard optical spectroscopy, which may provide a toolbox to explore a wealth of physics connecting the spintronics and photonics.Comment: 16 pages, 7 fig

    MAX-DOAS measurements of tropospheric NO2 and HCHO in Nanjing and a comparison to ozone monitoring instrument observations

    Get PDF
    In this paper, we present long-term observations of atmospheric nitrogen dioxide (NO2) and formaldehyde (HCHO) in Nanjing using a Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) instrument. Ground-based MAX-DOAS measurements were performed from April 2013 to February 2017. The MAX-DOAS measurements of NO2 and HCHO vertical column densities (VCDs) are used to validate ozone monitoring instrument (OMI) satellite observations over Nanjing. The comparison shows that the OMI observations of NO2 correlate well with the MAX-DOAS data with Pearson correlation coefficient (R) of 0.91. However, OMI observations are on average a factor of 3 lower than the MAX-DOAS measurements. Replacing the a priori NO2 profiles by the MAX-DOAS profiles in the OMI NO2 VCD retrieval would increase the OMI NO2 VCDs by similar to 30% with correlation nearly unchanged. The comparison result of MAX-DOAS and OMI observations of HCHO VCD shows a good agreement with R of 0.75 and the slope of the regression line is 0.99. An age-weighted backward-propagation approach is applied to the MAX-DOAS measurements of NO2 and HCHO to reconstruct the spatial distribution of NO2 and HCHO over the Yangtze River Delta during summer and winter time. The reconstructed NO2 fields show a distinct agreement with OMI satellite observations. However, due to the short atmospheric lifetime of HCHO, the backward-propagated HCHO data do not show a strong spatial correlation with the OMI HCHO observations. The result shows that the MAX-DOAS measurements are sensitive to the air pollution transportation in the Yangtze River Delta, indicating the air quality in Nanjing is significantly influenced by regional transportation of air pollutants. The MAX-DOAS data are also used to evaluate the effectiveness of air pollution control measures implemented during the Youth Olympic Games 2014. The MAX-DOAS data show a significant reduction of ambient aerosol, NO2 and HCHO (30 %-50 %) during the Youth Olympic Games. Our results provide a better understanding of the transportation and sources of pollutants over the Yangtze River Delta as well as the effect of emission control measures during large international events, which are important for the future design of air pollution control policies
    • …
    corecore