13,236 research outputs found

    Evolution of cooperation in multilevel public goods games with community structures

    Full text link
    In a community-structured population, public goods games (PGG) occur both within and between communities. Such type of PGG is referred as multilevel public goods games (MPGG). We propose a minimalist evolutionary model of the MPGG and analytically study the evolution of cooperation. We demonstrate that in the case of sufficiently large community size and community number, if the imitation strength within community is weak, i.e., an individual imitates another one in the same community almost randomly, cooperation as well as punishment are more abundant than defection in the long run; if the imitation strength between communities is strong, i.e., the more successful strategy in two individuals from distinct communities is always imitated, cooperation and punishment are also more abundant. However, when both of the two imitation intensities are strong, defection becomes the most abundant strategy in the population. Our model provides insight into the investigation of the large-scale cooperation in public social dilemma among contemporary communities.Comment: 6 pages, 4 figures, Accepted by EP

    Electromagnetic manipulation for anti-Zeno effect in an engineered quantum tunneling process

    Full text link
    We investigate the quantum Zeno and anti-Zeno effects for the irreversible quantum tunneling from a quantum dot to a ring array of quantum dots. By modeling the total system with the Anderson-Fano-Lee model, it is found that the transition from the quantum Zeno effect to quantum anti-Zeno effect can happen as the magnetic flux and the gate voltage were adjusted.Comment: 6 pages, 5 figure

    Effects of Chinese Herbal Recipes on Immunity in Immunosuppressive Mice

    Get PDF
    The Chinese herbal formula consisting of Astragalus membranaceus, Epimedium brevicornum, Paeoniae Alba Radix and Radix Ophiopogonis in proper proportions were adopted in order to investigate the immunoenhancing properties of the herbal formula. Fifty ICR mice were randomly divided into 5 groups (NS,NS+Hy,L+Hy,M+Hy,H+Hy). The mice in hydrocortisone (Hy) groups were injected with hydrocortisone i.p. to induce the immunosuppressive condition. The mice in group NS were administered with normal saline as controls. The mice in groups NS+Hy, L+Hy, M+Hy, H+Hy were administered with normal saline, low, moderate and high dose of the herbal prescription respectively by gavage for 6 days. The level of serum hemolysin, the function of antibody function cell(AFC)and CD4+/CD8+ T cell ratio were measured at the end of experiments. The results showed that the level of serum hemolysin, the function of AFC and CD4+/CD8+ T cell ratio in L+Hy,M+Hy,H+Hy groups increased significantly compared with those in NS or NS+Hy groups. These results indicate that Chinese herbal medicine prescription can enhance humoral immunity and cellular immune function of the immunosuppressivemouse

    Dirac Quasinormal modes of Schwarzschild black hole

    Full text link
    The quasinormal modes (QNMs) associated with the decay of Dirac field perturbation around a Schwarzschild black hole is investigated by using continued fraction and Hill-determinant approaches. It is shown that the fundamental quasinormal frequencies become evenly spaced for large angular quantum number and the spacing is given by ωλ+1−ωλ=0.38490−0.00000i\omega_{\lambda+1}- \omega_{\lambda}=0.38490-0.00000i. The angular quantum number has the surprising effect of increasing real part of the quasinormal frequencies, but it almost does not affect imaginary part, especially for low overtones. In addition, the quasinormal frequencies also become evenly spaced for large overtone number and the spacing for imaginary part is Im(ωn+1)−Im(ωn)≈−i/4MIm(\omega_{n+1})-Im(\omega_n)\approx -i/4M which is same as that of the scalar, electromagnetic, and gravitational perturbations.Comment: 14 pages, 5 figure

    Gap solitons of a super-Tonks-Girardeau gas in a one-dimensional periodic potential

    Full text link
    We study the stability of gap solitons of the super-Tonks-Girardeau bosonic gas in one-dimensional periodic potential. The linear stability analysis indicates that increasing the amplitude of periodic potential or decreasing the nonlinear interactions, the unstable gap solitons can become stable. In particular, the theoretical analysis and numerical calculations show that, comparing to the lower-family of gap solitons, the higher-family of gap solitons are easy to form near the bottoms of the linear Bloch band gaps. The numerical results also verify that the composition relations between various gap solitons and nonlinear Bloch waves are general and can exist in the super-Tonks-Girardeau phase.Comment: 7 pages,6 figure

    Formation time distribution of dark matter haloes: theories versus N-body simulations

    Full text link
    This paper uses numerical simulations to test the formation time distribution of dark matter haloes predicted by the analytic excursion set approaches. The formation time distribution is closely linked to the conditional mass function and this test is therefore an indirect probe of this distribution. The excursion set models tested are the extended Press-Schechter (EPS) model, the ellipsoidal collapse (EC) model, and the non-spherical collapse boundary (NCB) model. Three sets of simulations (6 realizations) have been used to investigate the halo formation time distribution for halo masses ranging from dwarf-galaxy like haloes (M=10−3M∗M=10^{-3} M_*, where M∗M_* is the characteristic non-linear mass scale) to massive haloes of M=8.7M∗M=8.7 M_*. None of the models can match the simulation results at both high and low redshift. In particular, dark matter haloes formed generally earlier in our simulations than predicted by the EPS model. This discrepancy might help explain why semi-analytic models of galaxy formation, based on EPS merger trees, under-predict the number of high redshift galaxies compared with recent observations.Comment: 7 pages, 5 figures, accepted for publication in MNRA

    Semiquantum key distribution using entangled states

    Full text link
    Recently, Boyer et al. presented a novel semiquantum key distribution protocol [M. Boyer, D. Kenigsberg, and T. Mor, Phys. Rev. Lett. 99, 140501 (2007)], by using four quantum states, each of which is randomly prepared by Z basis or X basis. Here we present a semiquantum key distribution protocol by using entangled states in which quantum Alice shares a secret key with classical Bob. We also show the protocol is secure against eavesdropping.Comment: 6 page
    • …
    corecore