54 research outputs found

    Cigarette Smoking in Male Patients with Chronic Schizophrenia in a Chinese Population: Prevalence and Relationship to Clinical Phenotypes

    Get PDF
    The high prevalence of smoking in schizophrenia of European background may be related to smoking's reducing clinical symptoms and medication side effects. Because smoking prevalence and its associations with clinical phenotypes are less well characterized in Chinese than European patients with schizophrenia, we assessed these smoking behaviors using clinician-administered questionnaires and the Fagerstrom Test for Nicotine Dependence (FTND) in 776 Chinese male schizophrenia and 560 control subjects. Patients also were rated on the Positive and Negative Symptom Scale (PANSS), the Simpson and Angus Extrapyramidal Symptom Rating Scale (SAES), and the Abnormal Involuntary Movement Scale (AIMS). We found that the schizophrenia patients had a higher lifetime incidence of smoking (79% vs 63%), were more likely to be heavy smokers (61% vs 31%), and had lower smoking cessation rates (4% vs 9%) (all p<0.0001) than controls. Among the schizophrenia patients smoking prevalence increased with age, with the largest difference from controls in the age cohort of 55–75 years: 75% vs 46% (p<0.0001). Among the schizophrenia smokers 73% started to smoke before the onset of their illness by an average of 7.6 years. The patients with schizophrenia who were current smokers scored significantly lower on the PANSS negative symptom subscore (p<0.005), and on the SAES symptom scale (p<0.04; Bonferroni corrected p>0.05) than the non-smoking patients. These results suggest that Chinese males with schizophrenia smoke more frequently than the general population. Further, smokers with schizophrenia may display fewer negative symptoms and possibly less parkinsonism than non-smokers with schizophrenia

    A family of single-switch wide-gain converters with low voltage stress

    No full text
    A new family of single-switch dc–dc converters with simple structure are introduced in this paper. Firstly, using the approach of a simple switching dual structure, a switched-capacitor–inductor (SCL) cell was presented. Then, a SCL cell can be combined with the conventional circuits (Buck, Boost, Buck–Boost, Sepic, Zeta, Cuk) to provide a wide voltage conversion ratio. Taking the derived Cuk converter as an example, the comparisons among another buck–boost converters are listed, the voltage gain of the derived converter is higher than other converters, and the voltage stress on the power device is less than other converters. Furthermore, the features of single switch, common ground, continuous input, and output current are satisfied simultaneously under the condition of using few components. Finally, the converter’s performance and the correctness of the analysis are validated with results from the experimental prototype

    Swing‐programmable SST transmitter with power‐efficient de‐emphasis

    No full text

    Crack Coalescence Behavior of Rock-Like Specimens Containing Two Circular Embedded Flaws

    No full text
    AbstractExperimental research on the growth of internal flaws has rarely been reported due to the fact that it is difficult to cut internal flaws in specimens and cannot capture the initiation and propagation processes of internal flaws through direct observations. This paper proposed a method for creating internal flaws in specimens by utilizing the volatilization of camphor. A series of compression tests were performed on rock-like specimens including two embedded circular flaws, and CT techniques were used to investigate the internal damage behavior of flawed specimens. Experimental results illustrate that the strength and deformation properties of flawed specimens increase nonlinearly with the confining pressure as well as flaw inclination angle. Crack coalescence patterns and failure modes of flawed specimens depend on not only the confining pressure but also the flaw inclination angle. The crack coalescence pattern varies from wing crack coalescence to mixed tension-shear crack coalescence and then to the shear crack coalescence as the crack inclination angle increases. Confining pressure contributes to shear crack growth and has an inhibiting effect on the propagation of tension cracks. For specimens with the same flaw inclination angle, the failure mode changed from tension failure to mixed shear-tension failure or from mixed shear-tension failure to pure shear failure with the increase of confining pressure

    Effects of Spraying KH<sub>2</sub>PO<sub>4</sub> on Flag Leaf Physiological Characteristics and Grain Yield and Quality under Heat Stress during the Filling Period in Winter Wheat

    No full text
    As one of the most important wheat-producing areas in China, wheat is prone to heat stress during the grain filling period in the Huang-Huai-Hai Plain (3HP), which lowers yields and degrades the grain quality of wheat. To assess the effects of spraying potassium dihydrogen phosphate (KH2PO4) on the physiological traits in flag leaves and grain yield (GY) and quality under heat stress during the filling period, we conducted a two-year field experiment in the winter wheat growing seasons of 2020–2022. In this study, spraying water combined with heat stress (HT), 0.3% KH2PO4 (KDP), and 0.3% KH2PO4 combined with heat stress (PHT) were designed, and spraying water alone was used as a control (CK). The dates for the spraying were the third and eleventh day after anthesis, and a plastic film shed was used to impose heat stress on the wheat plants during the grain filling period. The results showed that spraying KH2PO4 significantly improved the chlorophyll content and net photosynthesis rate (Pn) in flag leaves compared with the non-sprayed treatments. Compared with CK, the Pn in HT decreased by 8.97% after heat stress, while Pn in PHT decreased by 7.44% compared to that of KDP. The activities of superoxide dismutase, catalase, and peroxidase in flag leaves were significantly reduced when the wheat was subjected to heat stress, while malonaldehyde content increased, and the enzyme activities were significantly enhanced when KH2PO4 was sprayed. Heat stress significantly decreased the contribution rate of dry matter accumulation (DM) after anthesis of wheat to grain (CRAA), whereas spraying KH2PO4 significantly increased the CRAA and harvest index. At maturity, the DM in CK was significantly higher than that in HT, KDP was significantly higher than PHT, and KDP had the highest DM. Compared with CK, the GY in KDP significantly increased by 9.85% over the two years, while the GY in HT decreased by 11.44% compared with that of CK, and the GY in PHT decreased by 6.31% compared to that of KDP. Spraying KH2PO4 after anthesis primarily helped GY by maintaining a high thousand grain weight to lessen the negative effects of heat stress on wheat. Moreover, heat stress significantly reduced protein concentration, wet gluten content, dough development time, and hardness index in grains of mature, while spraying KH2PO4 maintained a sufficient grain quality under the conditions of achieving higher yields. Overall, spraying KH2PO4 after anthesis could enhance the heat stress resistance of wheat and maintain the photosynthetic capacity of flag leaves, ensuring the dry matter production and reducing the negative effects on grain yield and quality in the 3HP

    An analysis of the causes of meandering tracks of typhoons

    No full text
    corecore