112 research outputs found

    Efficient Triangular Interpolation Method: Error Analysis and Applications

    Get PDF
    The interpolation errors of bivariate Lagrange polynomial and triangular interpolations are studied for the plane waves. The maximum and root-mean-square (RMS) errors on the right triangular, equilateral triangular and rectangular (bivariate Lagrange polynomial) interpolations are analyzed. It is found that the maximum and RMS errors are directly proportional to the (p+1)’th power of kh for both one-dimensional (1D) and two-dimensional (2D, bivariate) interpolations, where k is the wavenumber and h is the mesh size. The interpolation regions for the right triangular, equilateral triangular and rectangular interpolations are selected based on the regions with smallest errors. The triangular and rectangular interpolations are applied to evaluate the 2D singly periodic Green’s function (PGF). The numerical results show that the equilateral triangular interpolation is the most accurate interpolation method, while the right triangular interpolation is the most efficient interpolation method

    An Efficient Multilevel Fast Multipole Algorithm to Solve Volume Integral Equation for Arbitrary Inhomogeneous Bi-Anisotropic Objects

    Get PDF
    A volume integral equation (VIE) based on the mixed-potential representation is presented to analyze the electromagnetic scattering from objects involving inhomogeneous bi-anisotropic materials. By discretizing the objects using tetrahedrons on which the commonly used Schaubert-Wilton-Glisson (SWG) basis functions are defined, the matrix equation is derived using the method of moments (MoM) combined with the Galerkin’s testing. Further, adopting an integral strategy of tetrahedron-to-tetrahedron scheme, the multilevel fast multipole algorithm (MLFMA) is proposed to accelerate the iterative solution, which is further improved by using the spherical harmonics expansion with a faster implementation and low memory requirement. The memory requirement of the radiation patterns of basis functions in the proposed MLFMA is several times less than that in the conventional MLFMA

    Privacy Attacks and Defenses for Digital Twin Migrations in Vehicular Metaverses

    Full text link
    The gradual fusion of intelligent transportation systems with metaverse technologies is giving rise to vehicular metaverses, which blend virtual spaces with physical space. As indispensable components for vehicular metaverses, Vehicular Twins (VTs) are digital replicas of Vehicular Metaverse Users (VMUs) and facilitate customized metaverse services to VMUs. VTs are established and maintained in RoadSide Units (RSUs) with sufficient computing and storage resources. Due to the limited communication coverage of RSUs and the high mobility of VMUs, VTs need to be migrated among RSUs to ensure real-time and seamless services for VMUs. However, during VT migrations, physical-virtual synchronization and massive communications among VTs may cause identity and location privacy disclosures of VMUs and VTs. In this article, we study privacy issues and the corresponding defenses for VT migrations in vehicular metaverses. We first present four kinds of specific privacy attacks during VT migrations. Then, we propose a VMU-VT dual pseudonym scheme and a synchronous pseudonym change framework to defend against these attacks. Additionally, we evaluate average privacy entropy for pseudonym changes and optimize the number of pseudonym distribution based on inventory theory. Numerical results show that the average utility of VMUs under our proposed schemes is 33.8% higher than that under the equal distribution scheme, demonstrating the superiority of our schemes.Comment: 8 pages, 6 figure

    On the Use of Hybrid CFIE-EFIE for Objects Containing Closed-Open Surface Junctions

    Get PDF
    To effectively solve the electromagnetic scattering or radiation properties from the perfect electric conductor (PEC) objects containing closed-open surface junctions, how to establish the hybrid combined field integral equation-electric field integral equation (CFIE-EFIE) is studied, which is different with the existing scheme for the objects where the closed and open parts are separate. Further, it is found that when the integral equation is solved using the method of moments (MoM), if the widely used RWG basis functions are employed to expand the induced surface current, the CFIE-EFIE may give inaccurate numerical results for the objects containing fine structures. The numerical accuracy can be improved by introducing the linear-linear (LL) basis functions. Moreover, to pursue a high computational efficiency, the LL and RWG basis functions are simultaneously used to expand the current on the fine structures and other relatively smooth surfaces respectively, whose validity is verified by numerical results

    A cuproptosis-associated long non-coding RNA signature for the prognosis and immunotherapy of lung squamous cell carcinoma

    Get PDF
    Cuproptosis, a copper-induced mechanism of mitochondrial-related cell death, has been implicated as a breakthrough in the treatment of cancer and has become a new treatment strategy. Furthermore, long non-coding RNA (lncRNA) can change the biological activities of tumor cells. Worldwide, lung squamous cell carcinoma (LUSC) is among the most common annoying tumors. LncRNAs related to cuproptosis are not researched at LUSC. Our research intends to develop a signature on the basis of cuproptosis-associated lncRNAs, which can predict LUSC prognosis and investigate LUSC immunological features. The TCGA database was used to retrieve LUSC transcriptome, clinical, and gene mutation data. For statistical analysis, we utilized the R program. We created a signature consisting of three cuproptosis-related lncRNAs in this investigation (including AC002467.1, LINC01740, and LINC02345). Survival analyses and Receiver Operating Characteristic curves demonstrated that this signature possessed powerful predictive capability. The signature’s ability to predict was confirmed by a Receiver Operating Characteristic curve and principal component analysis. Notably, the patient with a high-risk score and a high tumor mutation burden level had a lower survival time. Furthermore, the tumor immune dysfunction and exclusion analysis showed that these individuals with low-risk scores may benefit from immunotherapy. The signature constructed by three cuproptosis-associated lncRNAs may be prognostic markers of LUSC. It contributes to immunotherapy and offers LUSC’s therapy a new treatment direction

    Transcriptional profiles of bovine in vivo pre-implantation development

    Get PDF
    © 2014 Jiang et al.; licensee BioMed Central Ltd. Background: During mammalian pre-implantation embryonic development dramatic and orchestrated changes occur in gene transcription. The identification of the complete changes has not been possible until the development of the Next Generation Sequencing Technology.Results: Here we report comprehensive transcriptome dynamics of single matured bovine oocytes and pre-implantation embryos developed in vivo. Surprisingly, more than half of the estimated 22,000 bovine genes, 11,488 to 12,729 involved in more than 100 pathways, is expressed in oocytes and early embryos. Despite the similarity in the total numbers of genes expressed across stages, the nature of the expressed genes is dramatically different. A total of 2,845 genes were differentially expressed among different stages, of which the largest change was observed between the 4- and 8-cell stages, demonstrating that the bovine embryonic genome is activated at this transition. Additionally, 774 genes were identified as only expressed/highly enriched in particular stages of development, suggesting their stage-specific roles in embryogenesis. Using weighted gene co-expression network analysis, we found 12 stage-specific modules of co-expressed genes that can be used to represent the corresponding stage of development. Furthermore, we identified conserved key members (or hub genes) of the bovine expressed gene networks. Their vast association with other embryonic genes suggests that they may have important regulatory roles in embryo development; yet, the majority of the hub genes are relatively unknown/under-studied in embryos. We also conducted the first comparison of embryonic expression profiles across three mammalian species, human, mouse and bovine, for which RNA-seq data are available. We found that the three species share more maternally deposited genes than embryonic genome activated genes. More importantly, there are more similarities in embryonic transcriptomes between bovine and humans than between humans and mice, demonstrating that bovine embryos are better models for human embryonic development.Conclusions: This study provides a comprehensive examination of gene activities in bovine embryos and identified little-known potential master regulators of pre-implantation development

    Efficient current-induced spin torques and field-free magnetization switching in a room-temperature van der Waals magnet

    Full text link
    The discovery of magnetism in van der Waals (vdW) materials has established unique building blocks for the research of emergent spintronic phenomena. In particular, owing to their intrinsically clean surface without dangling bonds, the vdW magnets hold the potential to construct a superior interface that allows for efficient electrical manipulation of magnetism. Despite several attempts in this direction, it usually requires a cryogenic condition and the assistance of external magnetic fields, which is detrimental to the real application. Here, we fabricate heterostructures based on Fe3GaTe2 flakes that possess room-temperature ferromagnetism with excellent perpendicular magnetic anisotropy. The current-driven non-reciprocal modulation of coercive fields reveals a high spin-torque efficiency in the Fe3GaTe2/Pt heterostructures, which further leads to a full magnetization switching by current. Moreover, we demonstrate the field-free magnetization switching resulting from out-of-plane polarized spin currents by asymmetric geometry design. Our work could expedite the development of efficient vdW spintronic logic, memory and neuromorphic computing devices

    Ferromagnetic-antiferromagnetic coexisting ground states and exchange bias effects in MnBi4Te7\bf{MnBi_4Te_7} and MnBi6Te10\bf{MnBi_6Te_{10}}

    Full text link
    Natural superlattice structures (MnBi2Te4)(Bi2Te3)\rm{(MnBi_2Te_4)(Bi_2Te_3)}n_n (nn = 1, 2,...), in which magnetic MnBi2Te4\rm{MnBi_2Te_4} layers are separated by nonmagnetic Bi2Te3\rm{Bi_2Te_3} layers, hold band topology, magnetism and reduced interlayer coupling, providing a promising platform for the realization of exotic topological quantum states. However, their magnetism in the two-dimensional limit, which is crucial for further exploration of quantum phenomena, remains elusive. Here, complex ferromagnetic (FM)-antiferromagnetic (AFM) coexisting ground states that persist up to the 2-septuple layers (SLs) limit are observed and comprehensively investigated in MnBi4Te7\rm{MnBi_4Te_7} (nn = 1) and MnBi6Te10\rm{MnBi_6Te_{10}} (nn = 2). The ubiquitous Mn-Bi site mixing modifies or even changes the sign of the subtle inter-SL magnetic interactions, yielding a spatially inhomogeneous interlayer coupling. Further, a tunable exchange bias effect is observed in (MnBi2Te4)(Bi2Te3)\rm{(MnBi_2Te_4)(Bi_2Te_3)}n_n (nn = 1, 2), arising from the coupling between the FM and AFM components in the ground state. Our work highlights a new approach toward the fine-tuning of magnetism and paves the way for further study of quantum phenomena in (MnBi2Te4)(Bi2Te3)\rm{(MnBi_2Te_4)(Bi_2Te_3)}n_n (nn = 1, 2,...) as well as their magnetic applications.Comment: 9 pages, 4 figure

    Research on prognostic risk assessment model for acute ischemic stroke based on imaging and multidimensional data

    Get PDF
    Accurately assessing the prognostic outcomes of patients with acute ischemic stroke and adjusting treatment plans in a timely manner for those with poor prognosis is crucial for intervening in modifiable risk factors. However, there is still controversy regarding the correlation between imaging-based predictions of complications in acute ischemic stroke. To address this, we developed a cross-modal attention module for integrating multidimensional data, including clinical information, imaging features, treatment plans, prognosis, and complications, to achieve complementary advantages. The fused features preserve magnetic resonance imaging (MRI) characteristics while supplementing clinical relevant information, providing a more comprehensive and informative basis for clinical diagnosis and treatment. The proposed framework based on multidimensional data for activity of daily living (ADL) scoring in patients with acute ischemic stroke demonstrates higher accuracy compared to other state-of-the-art network models, and ablation experiments confirm the effectiveness of each module in the framework

    Extreme suppression of antiferromagnetic order and critical scaling in a two-dimensional random quantum magnet

    Full text link
    Sr_2CuTeO_6 is a square-lattice Néel antiferromagnet with superexchange between first-neighbor S=1/2 Cu spins mediated by plaquette centered Te ions. Substituting Te by W, the affected impurity plaquettes have predominantly second-neighbor interactions, thus causing local magnetic frustration. Here we report a study of Sr_2CuTe_1-xW_xO_6 using neutron diffraction and μSR techniques, showing that the Néel order vanishes already at x=0.025±0.005. We explain this extreme order suppression using a two-dimensional Heisenberg spin model, demonstrating that a W-type impurity induces a deformation of the order parameter that decays with distance as 1/r^2 at temperature T=0. The associated logarithmic singularity leads to loss of order for any x>0. Order for small x>0 and T>0 is induced by weak interplane couplings. In the nonmagnetic phase of Sr_2CuTe_1-x W_x O_6, the μSR relaxation rate exhibits quantum critical scaling with a large dynamic exponent, z≈3, consistent with a random-singlet state.Accepted manuscrip
    • …
    corecore