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Accurately assessing the prognostic outcomes of patients with acute ischemic 
stroke and adjusting treatment plans in a timely manner for those with poor 
prognosis is crucial for intervening in modifiable risk factors. However, there is 
still controversy regarding the correlation between imaging-based predictions of 
complications in acute ischemic stroke. To address this, we developed a cross-
modal attention module for integrating multidimensional data, including clinical 
information, imaging features, treatment plans, prognosis, and complications, 
to achieve complementary advantages. The fused features preserve magnetic 
resonance imaging (MRI) characteristics while supplementing clinical relevant 
information, providing a more comprehensive and informative basis for clinical 
diagnosis and treatment. The proposed framework based on multidimensional 
data for activity of daily living (ADL) scoring in patients with acute ischemic stroke 
demonstrates higher accuracy compared to other state-of-the-art network 
models, and ablation experiments confirm the effectiveness of each module in 
the framework.
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1 Introduction

Stroke is a cerebrovascular disease characterized by localized cerebral ischemia, hypoxia 
leading to ischemic necrosis or softening, and subsequent neurological dysfunction. 
Approximately 16 million people worldwide suffer from stroke each year, with 5.7 million 
deaths and around 5 million disabilities (1). Survivors often experience difficulties in 
swallowing, speech impairment, motor dysfunction, cognitive impairment, emotional 
disorders, and other functional deficits (2, 3). Early diagnosis, prediction, and rehabilitation 
are key strategies for improving the prognosis of stroke patients. Stroke treatment guidelines 
emphasize that early diagnosis of stroke relies on imaging findings and clinical symptoms/
signs. Neuroimaging plays a crucial role in the definitive diagnosis of suspected stroke patients. 
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However, limited studies have been conducted on the correlation 
between imaging-based predictions of complications in acute 
ischemic stroke, and most of them focus on single complications (4, 
5). Several scales have been used clinically to predict functional 
outcomes in stroke patients (6, 7), such as the acute stroke registry 
and analysis of Lausanne (ASTRAL) and the totaled health risks in 
vascular events (THRIVE). However, these scales mostly incorporate 
variables at admission and are intended to provide information for 
treatment, without collecting post-treatment data for prediction. 
Therefore, in order to accurately assess the prognostic outcomes of 
patients, adjust treatment plans in a timely manner for those with 
poor prognosis, and intervene in modifiable risk factors, machine 
learning methods are needed to predict the prognostic risk of patients 
with acute ischemic stroke.

MRI is one of the crucial tools for evaluating acute ischemic 
stroke and has been widely used in clinical practice due to its high 
detection accuracy, sensitivity, and specificity. Computer-aided 
diagnosis (CAD) based on MRI has received extensive attention 
from researchers both domestically and internationally. For 
example, the texture analysis of apparent diffusion coefficient 
maps and diffusion-weighted imaging were used to predict the 
prognosis and subtype of ischemic stroke (8–10). A systematic 
review also demonstrated that a combined model combining 
clinical and imaging variables was more predictive of stroke 
outcome (11).

This study aimed to construct an acute ischemic stroke prognosis 
assessment model based on multidimensional imaging data, clinical 
information, treatment plans, prognosis, and complications, as shown 
in Figure 1. It contains the adaptive lesion awareness module (ALAM), 
the patient metadata encoder based on multilayer perceptron (MLP-
FE), the cross-modal attention module (CMAM). This model 
provided a scientific basis for early clinical intervention, enabling 
healthcare professionals to make informed decisions and interventions 
based on the predicted prognosis.

2 Multidimensional ADL scoring 
network framework for acute 
ischemic stroke patients

In this section, we developed a multidimensional data-based cross-
modal attention fusion network for the prognosis assessment of acute 
ischemic stroke patients. The structure of the network was illustrated 
in Figure 2 and consisted of three main components: the ALAM, the 
MLP-FE, and the CMAM, which were described as follows:

Firstly, the ALAM was based on a multi-scale global-local 
attention mechanism. It adaptively focused on the lesion region by 
learning joint features of global context information and local detailed 
features, enabling the extraction of more discriminative imaging 
features (shown as Figure 1).

Secondly, to fully utilize the patient metadata, we designed the 
MLP-FE. This encoder compiled the patient metadata into 
corresponding feature representations.

Lastly, the CMAM was proposed in this study for the fusion of 
multidimensional data, including clinical information, imaging 
features, treatment plans, prognosis, and complications. It aimed to 
achieve information complementarity and cross-validation by 
integrating data from different modalities.

2.1 Adaptive lesion sense module

In clinical practice, acute ischemic stroke patients exhibited 
complex MRI imaging features (shown in Figure 2): the location, size, 
and appearance of the lesions varied significantly among different 
patients and stages of development. Furthermore, the complications 
associated with stroke often had similar imaging characteristics, 
making them difficult to differentiate. Additionally, mild cases with 
smaller lesions were prone to being overlooked. This posed a 
significant challenge for deep learning models to learn lesion imaging 

FIGURE 1

Based on the multi-dimensional network framework for the ADL score in patients with acute cerebral infarction.
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features from MRI, as it involved the issues of “same disease, different 
images” and “different diseases, same images.”

In this subsection, we constructed an integration of the global-
local attention module (GLAM) and the multiscale joint feature fusion 
module. This integration allowed for adaptive attention towards the 
relevant lesion regions and extraction of MRI images features by 
combining global and local views, akin to the process of radiologists’ 
image interpretation. Additionally, the hierarchical design within this 
module facilitated multiscale joint feature fusion, enabling the 
extraction of lesion characteristics of different shapes and sizes. 
Moreover, these features interacted with each other to obtain the most 
effective image information.

2.1.1 The global-local attention module
The global-local attention module is used to extract joint features 

that capture both global context and local details. It consists of two 
attention blocks: the global attention block (GAB) based on self-
attention mechanism and the local attention block (LAB) based on 
channel spatial attention. The GAB learns global context information 
to provide a comprehensive understanding of the scene, enabling the 
localization of lesion regions and the suppression of irrelevant 
background information. The LAB refines local features to capture 
more detailed lesion information, which helps in distinguishing 
similar imaging features of complications in acute ischemic stroke 
(AIS) and addressing the issue of “different diseases, same images.”

Global context encompasses the implicit relationships between 
pixels and scene information in an image, providing a holistic 
perception of the scene. It has been widely used in various computer 
vision applications such as scene parsing and object detection (12–15). 
Intuitively, not all image content in MRI contributes to the final 
diagnosis, and irrelevant background information may even have a 
detrimental effect. However, by reasoning about the global scene, it 
becomes easier to detect and focus on the lesion region in the image. 

Existing methods primarily rely on convolutional neural networks 
(CNNs) for extracting MRI images features, which do not fully exploit 
and utilize the global context of the image. This is mainly due to the 
local nature of CNNs, which prevents them from learning the global 
context that aids in better lesion localization. Currently, effective 
modeling and integration of global context information in MRI 
images feature learning is an important research question that has not 
been fully investigated.

Inspired by natural language processing (NLP) networks, which 
extensively use transformers (14) to model global dependencies in 
language sequences, we designed a global attention block based on 
self-attention Transformer to model non-local interactions for 
learning global contextual information from local features. This global 
attention mechanism effectively detects lesion regions and efficiently 
disregards irrelevant background information. It is worth noting that, 
unlike segmentation-based methods, the GAB can locate lesion 
regions in an adaptive learning manner without any manual 
annotation. This enables more flexibility and robustness in handling 
various complex lesion shapes. The implementation process can 
be described as follows.

Taking into account that GAB required a sequence as input, 
similar to (15), the input feature map F RC H W∈ × ×  was transformed 
into a sequence of flattened 2D patches X Rp

P C L∈ ×2

, where (P, P) 
represented the resolution of each image patch, L HW P= /

2  was the 
number of image patches. Then, the image patches were mapped to a 
D-dimensional space through a learnable linear transformation, 
resulting in an output feature sequence X RD L∈ ×  which served as the 
input to GAB.

As shown in Figure 3, GAB consisted of two sub-layers: Multi-
head self-attention (MHSA) and multi-layer perceptron (MLP). Each 
sub-layer was surrounded by residual connections, and layer 
normalization (LN) was applied before MHSA and MLP. Therefore, 
for an input feature sequence X, the output of GAB was given by

FIGURE 2

Example of the AIS patient MRI, where the red arrow indicates the focal area.
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 F X Xg MLP LN= + ( ) ′ ′ , (1)

among,

 ′ = + ( ) X X XMHSA LN . (2)

Although GAB can detect lesion regions through globally-guided 
attention, it is limited in learning lesion details. As the complications 
of AIS have similar imaging features, that is, there is a situation of 
“heterogeneous lesions and simultaneous shadows,” which requires 
learning more detailed lesion features to distinguish them. However, 
traditional CNN is difficult to accurately extract subtle visual features 
from images (16). The features extracted by CNN contain two types 
of information: channels and spatial regions, which have different 
contributions to learning lesion details (17, 18). In order to improve 
the characteristics of network contribution to high sensitivity, make it 
concentrate more high-end features, in order to enhance expressing 
ability for the pathological change information. In this study, a LAB 
based on channel spatial attention was designed to conduct adaptive 
feature refinement and refinement by learning the relationship 
between channel and feature spatial location.

As shown in Figure 3, LAB was constructed sequentially from 
channels and spatial attention to effectively aid the flow of information 
within the network by learning which information to emphasize or 
suppress. Based on this, the LAB can be  adaptive to refine local 
characteristic lesions in order to obtain more detailed information, 
and thus improve the network’s ability to distinguish the similarity 
between classes of AIS complications.

Given a figure F RC H W∈ × ×  as input, LAB sequentially output a 
channel attention map Αtt RCc ∈

× ×1 1 and a 2D spatial attention map 
Αtt R H W

s ∈
× ×1 , which can be defined as

 

′
′ ′

= ( )
= ( )

F F F
F F F

Att

Att

c

l s



  
(3)

In this context,  represented the dot product, ′F  and Fl 
correspond to the channel branch and LAB output, respectively.

2.1.2 Multi-scale joint feature fusion module
Although many deep learning-based methods have achieved great 

success in stroke lesion detection, most of them rely on single-scale 
feature information and cannot fully utilize multi-scale feature 
representation, so it is difficult to deal with lesions of various scales 
and shapes, especially for small lesions (19, 20). This is because the 
following several pooling layer resolution is reduced, the 
characteristics of the small lesions may be lost. Therefore, this project 
designs a network with multi-scale feature information to realize the 
comprehensive extraction of MRI lesion features. It can combine the 
convolutional features of lesions of different scales and sizes together, 
retain low-level features of small lesions in the feature extraction 
process, and improve the diagnostic performance of early and 
mild patients.

In ALAM, a multi-scale feature extractor based on the pre-trained 
VGG16 (21) was first used to extract the feature representation of 
different layers. Then, at each scale, GLAM took the extracted feature 
map as input and learns joint features, implemented by two attention 
branches, capturing both global context and local refinement features. 
Finally, by integrating GLAM into the feature extractor, ALAM was 
designed to propagate joint features in a coarse-to-fine manner, fully 
extracted useful explicit feature representations at different scales, and 
exploit the complementary advantages of cross-scale implicit 
correlations. Therefore, the proposed network can effectively and 
robustly learn the imaging features of complex lesions by fusing multi-
scale joint features, thereby significantly improving the detection 
performance of stroke lesions.

2.2 Based on the MLP patient metadata 
encoder

In clinical practice, radiologists will make medical diagnosis and 
evaluation of patients based on their imaging features and multi-
dimensional clinical information database, including clinical data, 
past medical history, complications, etc. However, existing deep 
learning (DL) models only use a single imaging feature to predict the 
diagnosis of patients, which is not convincing and accurate. In view of 
this, in addition to imaging features, this project also established a 
multi-dimensional clinical information database, including clinical 
data, past medical history, complications, and self-care scores, which 
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FIGURE 3

The structure of global-local attention module. Global attention block: learning global context information for detecting lesion regions; local attention 
block: refining local features to learn lesion details.
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can provide patients with higher quality, more accurate and more 
personalized medical diagnosis AIS.

In order to make full use of patient metadata, this study selected 
19 metadata features from the multi-dimensional clinical information 
database of patients, and designed a patient metadata encoder based 
on MLP to compile the patient metadata into the corresponding 
feature representation. Nineteen metadata features included “hospital,” 
“gender,” “age “, “disorder “, “consciousness,” “complications 
(hemiplegia) “, “pneumonia,” “aphasia,” “swallowing disorder,” “facial 
paralysis,” “dementia,” “cognitive impairment,” “depression,” “first 
ability score,” “hypertension,” “diabetes,” “atrial fibrillation,” “coronary 
atherosclerotic heart disease,” “hyperlipidemia,” “high 
homocysteinemia.” Specifically, there were two dense layers in this 
encoder, including 256 neurons. Each layer was followed by batch 
normalization and rectified linear unit (ReLU) activation layers. After 
the first dense layer attempts to generalize the metadata into the 
network, a further 25% was discarded using the dropout layer, thus 
avoiding possible overfitting of the data.

2.3 Cross-modal attention module

In order to strengthen the transfer between features and improve 
the performance of multimodal features, this study proposed a cross-
modal attention module for multi-dimensional data information 
fusion such as clinical data, imaging features, treatment plans, 
prognosis and complications to achieve information complementarity 
and cross-validation. Multimodal fusion features not only retained the 
imaging features of MRI, but also made up for the clinical relevant 
information of patients, which provided more rich and comprehensive 
information for clinical diagnosis and treatment. The specific 
implementation process was as follows:

Firstly, the imaging features F1 extracted by the adaptive lesion 
perception module and the metadata features F2  obtained by the 
patient metadata encoder were combined into a multimodal joint 
feature F:

 F F F= ( )Concat ,1 2 . (4)

Then, it was considered that the operation of directly 
concatenating these two features might propagate a large amount of 
useless information and noise generated during the encoding process 
to the decoding layer. Therefore, this project proposed to model the 
relationship between features by cross-modal attention to generate 
attention masks, and used it to adaptively select important features, 
which could inhibit the spread of some harmful information to a 
certain extent. The attention mask A can be  obtained from the 
following formula:

 
Α Β= ( ) { }{ }{ }σ FC ReLU FCN F ,

 
(5)

in which, σ  and ReLU were sigmoid and rectified linear unit 
activation functions, fully connected layer (FC) and batch 
normalization (BN ) were fully connected layer and batch 
normalization, respectively.

Finally, the learned attention mask A was multiplied with the 
original feature map F  to generate a feature map with attention 
weights Fo:

 F A Fo =  , (6)

in which,  was the dot product. Based on this, the network can 
adaptively attention important characteristics, noise and suppress 
irrelevant information. These features were then fed into a classifier to 
predict the final outcome.

3 Experiment and result analysis

3.1 Data sets and experimental settings

3.1.1 Dataset
This study collected 337 patients diagnosed with acute cerebral 

infarction and included MRI examinations from January 2019 to 
January 2023 in Panyu Central Hospital of Guangzhou. Please refer to 
Table 1 and Supplementary material for details of the data set.

3.1.2 Experimental setup
This experiment was deployed in the PyTorch deep learning 

framework. The server used was equipped with two NVIDIA GeForce 
RTX 3090 GPUs with 24G memory. In the study, the input images are 
resize to 224 × 224 in both training and testing. During training, the 
cross-entropy loss function is applied to calculate the loss values 
between the predicted results and ground-truth labels. Moreover, the 
loss of the network is minimized by the Adam optimizer with a 
learning rate of 0.001, where the batch size is set to 32 and training is 
stopped after 200 epochs.

3.1.3 Evaluation indicators
This article selected the accuracy, precision, sensitivity (i.e., recall), 

F1-score as a model of evaluation index, the calculation formula, 
respectively, as follows:

 
Accuracy

TP TN

TP FP TN FN
=

+
+ + +  

(7)

 
Precision

TP

TP FP
=

+  
(8)

 
Sensitivity

TP

TP FN
=

+  
(9)

 
Specificity

TN

TN FP
=

+  
(10)

 

Precision Sensitivity1 score 2
Precision Sensitivity

F ×
− = ×

+  
(11)
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Here, true positives (TP) and true negatives (TN) are the number 
of positive samples (that is, poor prognosis) and negative samples 
(that refers to good prognosis) that are correctly predicted, 
respectively. False positive (FP) is the number of negative samples 
misjudged as poor prognosis, and false negative (FN) is the number 
of poor prognosis samples misjudged as negative. In all experiments, 
the overall performance of the proposed and comparative methods 
was evaluated by calculating the mean and standard deviation of the 
cross-validation measures.

3.2 Experimental results

3.2.1 Comparison of performance indicators of 
different models

To validate the performance of the proposed model, it was 
compared with advanced image classification frameworks, including 
Res2Net (20), ResNet50 (22), CSPNet (23), EfficientNet (24), HRNet 
(25) and VGG16-GLAM. VGG16-GLAM is regarded as the proposed 
MRI analysis model that only takes MRI as input. The performance 
metrics of different models were shown in Table 1. The proposed 
model achieved an accuracy of 91.17%, precision of 87.26%, recall of 
95.21%, and F1-score of 91.06%, which significantly outperformed 
existing CNN frameworks. Compared to ResNet50 (22), the proposed 
model showed improvements of 6.04% in accuracy, 20.97% in recall, 
and 4.65% in F1-score. Although our method did not achieve optimal 
precision, it significantly improved the prediction of adverse prognosis 
in stroke patients compared to other methods. This has important 
clinical implications in the treatment of stroke patients, and it 
confirmed that the fusion of multidimensional data information, 
including clinical data, radiological features, treatment plans, 
prognosis, and complications, was beneficial for assessing the quality 
of life in patients with acute ischemic stroke.

Furthermore, the Grad-CAM technique (26) was applied to 
visualize the proposed model. As observed in Figure 4, the Grad-CAM 
saliency maps of ResNet50 can roughly locate the lesion regions, but 
they may overlook or misjudge certain small lesions (e.g., the last two 
images in the last column). In contrast, the proposed model can 
accurately capture lesions of various complex shapes, even detecting 
and paying attention to minor abnormalities. This indicated that by 
learning joint features that encompass global context and local 
refinement, the model could adaptively detect relevant lesion regions 
to extract more discriminative feature representations, leading to 
better identification of patient case types, surpassing other state-of-
the-art techniques. The experimental resulted in Figure 4 strongly 
support that the proposed model is intuitive and interpretable, 
confirming that the model’s decisions primarily depend on the lesion 
regions while disregarding irrelevant image content.

3.2.2 Ablation experiments
In this subsection, we  conducted a series of ablation 

experiments to validate the effectiveness of each key component of 
the prognostic assessment model for acute ischemic stroke based 
on multidimensional radiological data. Ablation studies for the 
proposed modules, including the multi-scale (MS) framework, 
GLAM, and the MLP. The No. 1 setting is the baseline network (i.e., 
VGG16) without these three modules, and then adding the to it as 
the No. 2 setting. GLAM is integrated into No. 2 to verify its 
effectiveness (No. 3). The No. 4 setting is the full version of the 
proposed network (see Table 2).

3.2.2.1 Effectiveness of the multiscale framework
To explore the contribution of the multiscale framework, we first 

used a single-scale network as the baseline model (No. 1) and 
compared it with other configurations. Table  3 showed that the 
proposed multiscale framework could learn better feature 
representations, resulting in performance improvements in all metrics 
compared to the single-scale framework. The No. 2 configuration 
using the multiscale framework achieved an accuracy improvement 
of 5.6%, sensitivity improvement of 12.12%, and precision 
improvement of 2.1%. The AUC of No. 1 and No. 2 was 0.843 and 
0.894 respectively, and the model quality increased from 0.82 to 0.87. 
As seen in Figures 5A,B,E,F,I,J, the multiscale framework significantly 
enhanced the prediction of adverse prognosis in stroke patients. These 
results indicated that the multiscale framework was capable of 
capturing lesions of different scales and shapes, effectively leveraging 
the overall characteristics of brain MRI images.

3.2.2.2 Effectiveness of GLAM
Compared to No. 2, the inclusion of the GLAM module in No. 

3 effectively improved the recognition performance, with an 
accuracy improvement of 1.35%, sensitivity improvement of 0.51%, 
and precision improvement of 2.37%. The AUC of No. 2 and No. 3 
was 0.894 and 0.908 respectively, and the model quality increased 
from 0.88 to 0.89. As shown in Figures 5B,C,F,G,J,K, the addition of 
the GLAM module enhanced the negative prediction level for 
stroke patients compared to Figure 5J. This indicated that the GAB 
in GLAM models the global contextual information, constructing 
global-guided attention to adaptively focus on affected regions 
while disregarding irrelevant information for better lesion 
identification. The LAB could adaptively refine local features to 
obtain detailed lesion information. The combination of these two 
modules effectively utilized joint characteristics to adaptively focus 
on lesion regions and learned more detailed imaging features, 
thereby achieving better diagnostic performance. This could serve 
as the foundation for clinical prognosis assessment in 
stroke patients.

TABLE 1 Distribution of cases (n  =  337) and distribution of training test data (n  =  3,106).

No. Distribution 
pattern

Training set Testing set

Eusemia Poor 
prognosis

Total Eusemia Poor 
prognosis

Total

1. Case distribution 142 95 237 60 40 100

2. Training test data 1,136 977 2,113 497 396 893
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3.2.2.3 Effectiveness of the patient metadata encoder 
based on MLP

Compared to No. 3, the fusion of patient metadata in No. 4 
effectively improved the recognition performance, with an accuracy 
improvement of 0.89%, sensitivity improvement of 7.08%, and F1-
score improvement of 1.22%. The AUC of No. 3 and No. 4 was 
0.908and 0.916 respectively, and the model quality was 0.89. As 
observed in the comparison between Figures 5C,D,G,H,K,L, while 
there was a slight decrease in the negative prediction level, there was 
a significant improvement in the positive prediction level for stroke 
patients. In terms of clinical significance, the improved accuracy in 
positive prediction was more meaningful than negative prediction. 
This indicated that the inclusion of multidimensional clinical 
information could provide higher quality and more accurate 
assessments for patients.

4 Discussion

In the past few decades, various machine learning techniques, 
including logistic regression (LR) (27), linear discriminant analysis 
(LDA) (28), support vector machines (SVM) (29), decision trees (DT) 
(30), random forests (RF) (31), and neural networks (32), have been 
applied. These methods heavily rely on feature engineering, such as 
shape, texture, and pixel intensity distribution (histogram) obtained 
from computer programs, which can be used to identify potential 
imaging-based biomarkers and serve as input for improved machine 
learning models (33). SVM has improved the identification of carotid 
atherosclerosis (CA) from magnetic resonance brain images and 
prevented ischemic stroke in 97.5% of patients (34). The RF algorithm 
combined with geodesic active contour (GAC) model can 
automatically segment cerebrospinal fluid (CSF) in CT images for 
early identification of brain edema, a major medical complication after 
ischemic stroke (35). The LR algorithm has aided in the analysis of CT 
angiography (CTA) lesions and the discrimination of mobile 
intraluminal thrombus and atherosclerotic plaques, assisting in the 
selection of stroke treatment plans, with a sensitivity of 87.5% (36). 
The use of artificial neural networks to predict inadequate perfusion 
and the presence of effective collateral circulation in CT perfusion 
scans can facilitate further treatment, achieving an accuracy of 85.8% 
in testing on CT perfusion images of 396 patients (37). Several studies 
have employed machine learning methods on various public datasets 
to address various stroke-related issues for better improvement of 
healthcare systems and stroke treatment plans (38). However, the 
traditional machine learning approaches require preprocessing of 
input features and manual extraction. Optimization of image features 
and susceptibility to interference from multimodal imaging need 
further exploration and improvement (39). Recently, deep learning, as 
an emerging artificial intelligence (AI) technique, has the ability to 
automatically capture hierarchical and complex features from raw 
input data (40–42). Deep neural networks, with multiple layers, 
simulate the perception of the human brain, transforming “low-level” 
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FIGURE 4

Examples of Grad-CAM thermal map of MRI. Original images (top row) and the Grad-CAM thermal map of the ResNet50 model (2nd row) and the 
proposed method (bottom row).

TABLE 2 Comparison of the performance indicators of the different 
models.

Method Accuracy 
(%)

Precision 
(%)

Recall 
(%)

F1-score 
(%)

ResNet50 85.67 ± 1.12 91.87 ± 2.50 74.24 ± 1.76 82.12 ± 2.07

Res2Net 82.17 ± 2.77 82.24 ± 3.01 76.01 ± 3.28 79.00 ± 3.14

CSPNet 80.96 ± 2.35 82.10 ± 1.98 72.98 ± 2.77 77.27 ± 2.31

EfficientNet 82.08 ± 3.24 85.93 ± 2.75 70.96 ± 4.79 77.73 ± 3.49

HRNet 83.65 ± 2.79 84.72 ± 3.89 77.02 ± 2.52 80.68 ± 3.06

VGG16 83.87 ± 1.57 86.41 ± 2.89 75.50 ± 3.78 86.41 ± 3.28

VGG16-

GLAM

90.82 ± 2.24 90.88 ± 2.86 88.13 ± 4.04 89.84 ± 3.34

Proposed 

method

91.71 ± 2.68 87.26 ± 1.39 95.21 ± 2.02 91.06 ± 1.58
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to “high-level” representations, particularly in large-scale task 
solutions, in imaging classification, natural language processing, or 
bioinformatics (43, 44). In recent years, medical image processing has 
emerged as a hot research topic in deep learning, involving disease 
classification (45), lesion localization and segmentation, imaging 
reconstruction (46), and other tasks. Therefore, deep learning has 
been widely applied in stroke diagnosis and management, such as 
predicting clinical prognosis in AIS patients (47). Compared to 
traditional machine learning methods, deep CNN learning does not 
rely on handcrafted features. It automatically extracts and represents 
complex features when locating the core stroke lesions in CT or MRI 
(48). Deep learning not only saves time and effort but also captures 
pixel-level information of the lesions, contributing to improved 
diagnostic accuracy and prognosis (49).

Various artificial intelligence models have been widely applied in 
predicting the prognosis of ischemic stroke patients. Compared to 
predicting future stroke lesions on CT or MRI predicting patient 
prognosis is more challenging because commonly used prognostic 
scoring systems, such as the modified Rankin scale (mRS), are 
nonlinear and subjective, analyzing patients as a whole rather than on 
a voxel-by-voxel basis. This means there are fewer opportunities for 

artificial neural networks to learn from data, requiring larger training 
datasets to compensate for this limitation.

Previous studies mostly used non-imaging data as input and 
employed simple statistical models or machine learning models to 
predict prognosis (47, 50–53). However, CT or MRI can provide more 
information such as the size and location of infarctions. Tang et al. 
(54) utilized machine learning techniques combined with clinical data 
and the core-penumbra mismatch ratio from MRI and MRI perfusion 
to determine post-thrombolysis clinical outcomes. The short-term 
(7-day) result had an area under curve (AUC) of 0.863 [95% 
confidence interval (CI), 0.774–0.951], and the long-term (90 days) 
result had an AUC of 0.778 (95% CI, 0.668–0.888). Decision tree-
based algorithms were able to predict the recovery outcomes (mRS >2 
at 90 days) utilizing imaging and clinical data, with AUCs of 0.746 
(extreme gradient boosting) and 0.748 (gradient boosting machine). 
Wang et  al. (9) and Zhou et  al. (8) used a multivariate logistic 
regression model to construct an imaging omics nomogram 
containing patient characteristics and imaging omics characteristics, 
and the AUC used to predict stroke outcome was greater than 0.80. 
Sun et al. (10) used clinical features and apparent diffusion coefficient 
maps to predict poor prognosis of acute stroke (mRS score >2) and 

TABLE 3 Effectiveness of component of the model.

No. MS GLAM MLP Accuracy Precision Recall F1-score

1 83.87 ± 1.57 86.41 ± 2.89 75.50 ± 3.78 86.41 ± 3.28

2 √ 89.47 ± 2.79 88.51 ± 1.02 87.62 ± 4.29 89.59 ± 1.65

3 √ √ 90.82 ± 2.24 90.88 ± 2.86 88.13 ± 4.04 89.84 ± 3.34

4 √ √ √ 91.71 ± 2.68 87.26 ± 1.39 95.21 ± 2.02 91.06 ± 1.58

Bold values indicate best performance.

FIGURE 5

Predictive model evaluation. (A–D) Receiver Operating Characteristic curve. (E–H) Overall model quality. (I–L) Confusion matrixes of the ablation 
experiment. P: Poor prognosis; N: Eusemia.
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the AUC was 0.80. These models were superior to models using 
non-imaging data, and the clinical data were continuous and related, 
which demonstrates the great potential of the combination. The 
performance of this algorithm further improved when National 
Institute of Health stroke scale (NIHSS) 24 h and reperfusion status 
were included (55). Machine learning techniques, including 
regularized logistic regression, linear support vector machine, and 
random forest, outperformed existing pre-treatment scoring methods 
in predicting favorable clinical outcomes (90 days mRS >2) for patients 
undergoing thrombectomy for large vessel occlusion (LVO) (50).

Osama et al. (56) developed a parallel multi-parameter feature 
embedding Siamese network (PMFE-SN) that can learn from a small 
number of samples and handle skewness in multi-parameter MRI data. 
The proposed multi-parameter embedding architecture in PMFE-SN 
is based on deep learning and avoids overfitting even with a small 
number of samples in the dataset. The authors successfully predicted 
the prognosis of acute ischemic stroke patients 3 months later using 
MRI perfusion images and clinical data from the 2017 Ischemic Stroke 
LEsion Segmentation (ISLES) challenge, demonstrating superior 
performance compared to other advanced techniques.

Hilbert et al. (57) compared a deep learning model constructed 
using residual neural networks with a machine learning model 
utilizing traditional radiological image markers. The results showed 
that automatic image analysis using deep learning methods 
outperformed previous radiological image markers in predicting the 
prognosis of ischemic stroke patients and had the potential to improve 
treatment selection.

The proposed multi-dimensional ADL scoring network 
framework for AIS patients has higher accuracy than other state-of-
the-art network models. Ablation experiments also confirmed the 
effectiveness of each module in the framework. In addition, the 
visualization results using the Grad-CAM technique show that our 
method can accurately locate the lesion area while ignoring irrelevant 
background information, indicating that the final identification results 
determined by the model are reliable and interpretable. This will help 
to provide more rich and comprehensive information for providing 
clinical diagnosis and treatment.

The effect of allowing machines to autonomously learn to fit 
nonlinear equations based on massive data rather than artificial 
formulas is closer to the complex problem itself. The same deep 
learning network can be trained for different types of samples and 
produce different fitting models individually to enhance its general 
applicability. Therefore, the development of acute cerebral infarction 
prognostic risk prediction models based on imaging and multi-
dimensional data based on PyTorch deep learning framework is of 
great significance for early evaluation and intervention, guiding 
treatment plans and judging prognosis, reducing disability rate and 
reducing social and economic burden.

A total of 337 patients were included in our study, including 237 in 
the training set and 100 in the testing set. A study by Quan et al. (58), 
such as using fluid attenuated inversion recovery (FLAIR) and apparent 
diffusion coefficient (ADC) images to extract the image of omics 
characteristics to predict the prognosis of patients with AIS, included 
190 cases of acute ischemic stroke patients, divided into the training 
group (n = 110) and external validation group (n = 80). In the study by 
Tang et al. (59) to predict the prognosis of patients with acute ischemic 
stroke receiving thrombolytic therapy, 168 patients with acute ischemic 

stroke were included. Compared with these studies on predicting the 
prognosis of ischemic stroke, our study not only included a large 
sample size, but also had a richer content, not limited to a specific 
treatment (thrombolysis, mechanical thrombectomy, etc.) and a single 
subtype of ischemic stroke. The larger sample size in our study provided 
more statistical power and enhances the reliability of the findings. This 
broader scope allowed for a more comprehensive understanding of the 
factors influencing the prognosis of ischemic stroke patients.

However, it is important to acknowledge the limitations of our 
study. Firstly, the retrospective nature of the study design introduces 
inherent limitations. Retrospective studies rely on existing data, which 
may be subject to selection bias and confounding factors. Prospective 
studies would provide more robust evidence and minimize potential 
biases. Secondly, all the samples used in our study were obtained from 
a single center, which might limit the generalizability of the findings. 
The patient population and treatment protocols at a single center may 
not be  representative of other centers or populations. Therefore, 
multicenter validation is necessary to confirm the external validity and 
generalizability of our results.

To address these limitations, future studies could employ 
prospective designs with larger and more diverse samples, including 
patients from multiple centers. In addition, the inclusion of additional 
clinical and imaging variables could further enhance the predictive 
accuracy of our models. By addressing these limitations and 
conducting more rigorous studies, we can strengthen the evidence 
base and improve the prediction of prognosis in patients with 
ischemic stroke.

5 Conclusion

In this study, a model consisted of ALAM, MLP-FE, CMAM were 
constructed for multi-dimensional data information fusion, such as 
clinical data, imaging features, treatment plans, prognosis and 
complications, so as to achieve complementary advantages. The fusion 
features not only retain the MRI images features, but also make up for 
the clinical relevant information of the patient, which provided higher 
quality, more accurate and more personalized medical diagnostic for 
prognosis of AIS.
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