1,891 research outputs found

    Interplay between Quantum Size Effect and Strain Effect on Growth of Nanoscale Metal Thin Film

    Full text link
    We develop a theoretical framework to investigate the interplay between quantum size effect (QSE) and strain effect on the stability of metal nanofilms. The QSE and strain effect are shown to be coupled through the concept of "quantum electronic stress. First-principles calculations reveal large quantum oscillations in the surface stress of metal nanofilms as a function of film thickness. This adds extrinsically additional strain-coupled quantum oscillations to surface energy of strained metal nanofilms. Our theory enables a quantitative estimation of the amount of strain in experimental samples, and suggests strain be an important factor contributing to the discrepancies between the existing theories and experiments

    ANALYSIS OF ANGULAR MOMENTUM THE WHOLE BODY DURING GLIDE HITTING AND KICK HITTING IN BASEBALL

    Get PDF
    The purpose of this study were to analyze the biomechanical characteristics of glide and kick hitting in baseball which exerted by professional baseball players in Taiwan. Five professional baseball players were selected as the subjects. The experiment used two JVC-DV 9800 high-speed digital cameras(120 Hz).The video data was treated by Kwon3D 3.0 motion analysis system. The following are the main results: The kick hitting could get better rotation benefit and optimum. In the stride phase, angUlar momentum of the body is increasing by body inertia. In the rotation phase, the velocity increasing of the body center of gravity makes the angUlar momentum increase. The largest angular momentum appears right before the ball hi!. Because the body inertia in ball hitting moment was very small, the angUlar momentum was mainly affected by angular velocity. In the phase, the average value, largest value and hitting moment value of angular momentum with kick hitting are larger than those with glide hitting. Therefore, the kick hitting could get larger linear and angular momentum

    Malignant phyllodes tumors display mesenchymal stem cell features and aldehyde dehydrogenase/disialoganglioside identify their tumor stem cells.

    Get PDF
    IntroductionAlthough breast phyllodes tumors are rare, there is no effective therapy other than surgery. Little is known about their tumor biology. A malignant phyllodes tumor contains heterologous stromal elements, and can transform into rhabdomyosarcoma, liposarcoma and osteosarcoma. These versatile properties prompted us to explore their possible relationship to mesenchymal stem cells (MSCs) and to search for the presence of cancer stem cells (CSCs) in phyllodes tumors.MethodsParaffin sections of malignant phyllodes tumors were examined for various markers by immunohistochemical staining. Xenografts of human primary phyllodes tumors were established by injecting freshly isolated tumor cells into the mammary fat pad of non-obese diabetic-severe combined immunodeficient (NOD-SCID) mice. To search for CSCs, xenografted tumor cells were sorted into various subpopulations by flow cytometry and examined for their in vitro mammosphere forming capacity, in vivo tumorigenicity in NOD-SCID mice and their ability to undergo differentiation.ResultsImmunohistochemical analysis revealed the expression of the following 10 markers: CD44, CD29, CD106, CD166, CD105, CD90, disialoganglioside (GD2), CD117, Aldehyde dehydrogenase 1 (ALDH), and Oct-4, and 7 clinically relevant markers (CD10, CD34, p53, p63, Ki-67, Bcl-2, vimentin, and Globo H) in all 51 malignant phyllodes tumors examined, albeit to different extents. Four xenografts were successfully established from human primary phyllodes tumors. In vitro, ALDH+ cells sorted from xenografts displayed approximately 10-fold greater mammosphere-forming capacity than ALDH- cells. GD2+ cells showed a 3.9-fold greater capacity than GD2- cells. ALDH+/GD2+cells displayed 12.8-fold greater mammosphere forming ability than ALDH-/GD2- cells. In vivo, the tumor-initiating frequency of ALDH+/GD2+ cells were up to 33-fold higher than that of ALDH+ cells, with as few as 50 ALDH+/GD2+ cells being sufficient for engraftment. Moreover, we provided the first evidence for the induction of ALDH+/GD2+ cells to differentiate into neural cells of various lineages, along with the observation of neural differentiation in clinical specimens and xenografts of malignant phyllodes tumors. ALDH+ or ALDH+/GD2+ cells could also be induced to differentiate into adipocytes, osteocytes or chondrocytes.ConclusionsOur findings revealed that malignant phyllodes tumors possessed many characteristics of MSC, and their CSCs were enriched in ALDH+ and ALDH+/GD2+ subpopulations

    Swimming exercise ameliorates hypertension-induced kidney dysfunction via alleviating renal interstitial fibrosis and apoptosis

    Get PDF
    Background: Hypertensive nephropathy is one of the major causes of ESRD. Exercise has been considered a nonpathological therapy for hypertension and its complications, yet mechanisms remain unclear. We sought to investigate whether periodic swimming could ameliorate hypertension-induced kidney dysfunction and its underlying mechanisms. Methods: Four-week male spontaneously hypertensive rats (SHRs) were randomly divided into the hypertension group (SHR, n = 8) and exercise group (SE, n = 8, 60 min swimming/day, 6 days per week, for 8 weeks). Wistar-Kyoto rats (WKY, n = 8) were served as a sedentary normotensive group. Bodyweight and blood pressure (BP) were recorded weekly. After 8-week sedentary or swimming exercise, lipids profile, BUN, and Cr were measured. The renal interstitial fibrosis was examined by the histopathological analysis using Masson\u27s trichrome staining and hematoxylin and eosin staining. The kidney cell apoptosis was tested by TUNEL staining. The expressions of critical proteins responsible for the TGF-β1/Smad signaling of fibrosis, that is, TGF-β1, Smad2/3, and Smad7, as well as apoptosis related proteins, Bax and Bcl-2 in kidney cortex tissues were measured. Results: The 8-week swimming exercise reduced BP and bodyweight, lowered concentrations of BUN, and serum Cr, compared with SHR. Exercise remarkably inhibited hypertension-induced tubular degeneration, cellular cluster, and tubular cell swelling as well as glomerular degeneration in the kidney cortical tissues, attenuated renal interstitial fibrosis, and renal cell apoptosis. Moreover, expressions of TGF-β1, Smad2/3, and Bax were higher in the SHR than the WKY, which were significantly suppressed by the exercise. In contrast, hypertension-reduced expressions of Smad7 and Bcl-2 were enhanced by the swimming exercise. Strong correlations were found between kidney function indices, blood lipids, and key protein expressions. Conclusion: Our results demonstrate beneficial effects of the periodic swimming on ameliorating hypertension-induced kidney dysfunction highlighting the potential of swimming exercise as a nonpathological therapy for early prevention of hypertension-caused kidney diseases

    Recombinant human insulin-like growth factor-1 promotes osteoclast formation and accelerates orthodontic tooth movement in rats

    Get PDF
    Background: IGF-1 may be an important factor in bone remodeling, but its mechanism of action on osteoclasts during orthodontic tooth movement is complex and unclear. Methodology: The closed-coil spring was placed between the left maxillary first molar and upper incisors with a force of 50 g to establish an orthodontic movement model. Eighty SD rats were randomized to receive phosphate buffer saline or 400 ng rhIGF-1 in the lateral buccal mucosa of the left maxillary first molar every two days. Tissue sections were stained for tartrate-resistant acidic phosphatase (TRAP), the number of TRAP-positive cells was estimated and tooth movement measured. Results: The rhIGF-1 group exhibited evidential bone resorption and lacuna appeared on the alveolar bone compared to the control group. Moreover, the number of osteoclasts in compression side of the periodontal ligament in the rhIGF-1 group peaked at day 4 (11.37±0.95 compared to 5.28±0.47 in the control group) after the orthodontic force was applied and was significantly higher than that of the control group (p<0.01). Furthermore, the distance of tooth movement in the rhIGF-1 group was significantly larger than that of the control group from day 4 to day 14 (p<0.01), suggesting that rhIGF-1 accelerated orthodontic tooth movement. Conclusion: Our study has showed that rhIGF-1 could stimulate the formation of osteoclasts in the periodontal ligament, and accelerate bone remodeling and orthodontic tooth movement

    Spatial distribution of job opportunities in China: Evidence from the opening of the high-speed rail

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The provision of sufficient job opportunities has traditionally been a primary objective for both local and central governments. In response to this concern, we investigate spatial dependence of job opportunities among 30 Chinese provincial capital cities (PCCs) from 2002 to 2016, giving special attention to the spatial spillovers of the opening of the high-speed rail (HSR). Using appropriate spatial panel data models, our findings suggest the presence of significant spatial autocorrelation of job opportunities among PCCs. Whilst the HSR has been found to increase job opportunities at the national level, which, however, is not confirmed at the regional level. The spatial spillover effects of the HSR are significant and positive only in the eastern/northeastern region. These findings can help the central government to more fully understand spatial dependence of job opportunities, better plan future HSR networks, and efficiently allocate transportation resources, encouraging cross-regional collaboration to promote regional employment

    Mixed Attention Network for Cross-domain Sequential Recommendation

    Full text link
    In modern recommender systems, sequential recommendation leverages chronological user behaviors to make effective next-item suggestions, which suffers from data sparsity issues, especially for new users. One promising line of work is the cross-domain recommendation, which trains models with data across multiple domains to improve the performance in data-scarce domains. Recent proposed cross-domain sequential recommendation models such as PiNet and DASL have a common drawback relying heavily on overlapped users in different domains, which limits their usage in practical recommender systems. In this paper, we propose a Mixed Attention Network (MAN) with local and global attention modules to extract the domain-specific and cross-domain information. Firstly, we propose a local/global encoding layer to capture the domain-specific/cross-domain sequential pattern. Then we propose a mixed attention layer with item similarity attention, sequence-fusion attention, and group-prototype attention to capture the local/global item similarity, fuse the local/global item sequence, and extract the user groups across different domains, respectively. Finally, we propose a local/global prediction layer to further evolve and combine the domain-specific and cross-domain interests. Experimental results on two real-world datasets (each with two domains) demonstrate the superiority of our proposed model. Further study also illustrates that our proposed method and components are model-agnostic and effective, respectively. The code and data are available at https://github.com/Guanyu-Lin/MAN.Comment: WSDM 202

    Evolution of the strange-metal scattering in momentum space of electron-doped La2xCexCuO4{\rm La}_{2-x}{\rm Ce}_x{\rm CuO}_4

    Full text link
    The linear-in-temperature resistivity is one of the important mysteries in the strange metal state of high-temperature cuprate superconductors. To uncover this anomalous property, the energy-momentum-dependent imaginary part of the self-energy Im Σ(k,ω){\rm \Sigma}(k, \omega) holds the key information. Here we perform systematic doping, momentum, and temperature-dependent angle-resolved photoemission spectroscopy measurements of electron-doped cuprate La2xCexCuO4{\rm La}_{2-x}{\rm Ce}_x{\rm CuO}_4 and extract the evolution of the strange metal scattering in momentum space. At low doping levels and low temperatures, Im Σω{\rm\Sigma} \propto \omega dependence dominates the whole momentum space. For high doping levels and high temperatures, Im Σω2{\rm\Sigma} \propto \omega^2 shows up, starting from the antinodal region. By comparing with the hole-doped cuprates La2xSrxCuO4{\rm La}_{2-x}{\rm Sr}_x{\rm CuO}_4 and Bi2Sr2CaCu2O8{\rm Bi}_2{\rm Sr}_2{\rm CaCu}_2{\rm O}_8, we find a dichotomy of the scattering rate exists along the nodal and antinodal direction, which is ubiquitous in the cuprate family. Our work provides new insight into the strange metal state in cuprates
    corecore