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Spatial distribution of job opportunities in China: Evidence from the opening of the high-

speed rail 
Highlights 

 

1. The provision of sufficient job opportunities is a primary concern for the central governments.  

2. The opening of the HSR increases job opportunities at the national level. 

3.    Spatial dependence of job opportunities is found. 
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Spatial distribution of job opportunities in China: Evidence from the opening of 

the high-speed rail 

 

Abstract 

The provision of sufficient job opportunities has traditionally been a primary objective for 

both local and central governments. In response to this concern, we investigate spatial dependence 

of job opportunities among 30 Chinese provincial capital cities (PCCs) from 2002 to 2016, giving 

special attention to the spatial spillovers of the opening of the high-speed rail (HSR). Using 

appropriate spatial panel data models, our findings suggest the presence of significant spatial 

autocorrelation of job opportunities among PCCs. Whilst the HSR has been found to increase job 

opportunities at the national level, which, however, is not confirmed at the regional level. The 

spatial spillover effects of the HSR are significant and positive only in the eastern/northeastern 

region. These findings can help the central government to more fully understand spatial 

dependence of job opportunities, better plan future HSR networks, and efficiently allocate 

transportation resources, encouraging cross-regional collaboration to promote regional 

employment. 
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1. Introduction 

It is widely acknowledged that the provision of sufficient job opportunities is a traditional 

macroeconomic objective for the central government due to its vital role in promoting economic 

growth and economic equity. As a fundamental factor of production, the amount of labor 

employed to produce goods and services can, to a certain extent, determine the total output of an 

economy (Mankiw, 2010, p.47-49). Meanwhile, an economy with abundant labor resources, 

especially skilled and productive labor, which acquired skills through human capital and learning 

investment, can create its own competitive advantages by attracting more investors and capital, 

which in turn creates more jobs and generates economic prosperity and growth (Hatch and Dyer, 

2004). The number of job opportunities provided in the economy can affect individuals in a direct 

and serious manner. Since most individuals rely on job earnings to maintain their standard of 

living, a shortage of job opportunities potentially causes an unemployment problem and lowers 

living standards in the present, as well as reducing the ability to access higher education, better 

housing, and more affordable healthcare services in the future, which in turn increases income 

inequality (Mankiw, 2015, p.579).    

From the Cobb-Douglas (C-D) production point of view, an economy’s outputs of goods and 

services depend on the quantities of its inputs (e.g., labor, capital) and its ability to combine those 

inputs to produce outputs, which is determined by the available production technology (Arrow et 

al., 1961; Mankiw, 2010, p.47). In other words, the number of job opportunities can be 

significantly affected by the production level indicated by economy size, capital stock, and the 

adopted technology. As a result, the local and central governments may use expansionary policies 

such as the construction of roads, railways, and bridges, to increase production capacity and create 

more job opportunities given the available production technology (Dalenberg et al., 1998). 

Furthermore, positive effects of transportation infrastructure improvements on employment have 

been empirically confirmed in previous studies (Levinson, 2012; Lee and Kim, 2015). This has 

encouraged the local and central governments to invest in developing transportation networks, 

especially the high-speed rail (HSR) networks in recent decades, in order to stimulate employment. 

In the case of China, particular economic, political and cultural considerations have led the central 

government to play a critical role in planning future HSR networks and allocating HSR investment 

among different regions (Chen et al., 2016). Such HSR investment requires a special consideration 
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of spatial spillovers. Accordingly, a growing concern of the central government is how to 

separately assess impacts of the opening of the HSR on local and neighboring job opportunities 

when investing in the HSR networks. This particular topic has received little attention in the 

existing literature (Hensher et al., 2014; Dong, 2018; Heuermann and Schmieder, 2019), and will 

be addressed in the current study from the perspective of spatial econometrics. 

The aforementioned spatial spillover effects of the opening of the HSR can be captured by 

the spatial panel data models (SPDMs). Therefore, this study uses the SPDMs to examine spatial 

dependence of job opportunities among 30 Chinese PCCs from 2002 to 2016. This study 

contributes to previous literature in three main areas. First, it considers a general SPDM without 

extra restrictions on the model specification, which helps to identify the most appropriate model to 

describe spatial dependence of job opportunities. Second, unlike previous studies which mainly 

use a spatial weight matrix based on either the inverse of geographic distance or the fact of being 

(or not being) neighbors to reflect the spatial influence among different PCCs, this study 

constructs an alternative spatial weight matrix based on the inverted absolute differences in the 

gross domestic product (GDP). This approach examines how economic distance affects the spatial 

distribution of job opportunities among PCCs. Third, to provide a clear and concise analysis, this 

study uses the C-D production function framework to highlight the most important factors 

affecting job opportunities, thereby avoiding an overly detailed investigation of influences on the 

demand and supply of labor force. Such simplification suggests strong cross-regional 

collaboration to promote employment, and also highlights the coordinative role of the central 

government in planning future HSR networks, allocating HSR investments, and creating job 

opportunities among PCCs. 

The remainder of this study is organized as follows: Section 2 reviews previous studies and 

identifies the key research gaps. Section 3 introduces the methodology. Section 4 discusses the 

data collection and empirical results. Section 5 presents the discussion and policy implications. 

Section 6 draws conclusions. 

 

2. Literature review 

Many studies have been devoted to modeling the distribution of job opportunities under the 

demand-supply framework, aiming to identify the key factors that affect the demand and supply of 
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job opportunities and examine labor mobility within and across regions. First and foremost, wage 

rate is generally believed to be the most important factor affecting labor demand-supply and labor 

mobility. For example, Lee and Wolpin (2006) assess how the wage difference between the service 

and the goods sectors influences intersectoral labor mobility using a two-sector labor market 

equilibrium model. Simonen et al. (2016) examine the impact of regional wage levels as well as 

other factors on inter- or intra-sector or region employment mobility in the high-tech sector in 

Finland. Due to its importance for job opportunities, wage rate has also received considerable 

attention in McLaughlin and Bils (2001), Beladi et al. (2008), Mitra and Ranjan (2010), and 

Dustmann et al. (2017). The second widely recognized factor is the regional unemployment rate. A 

higher unemployment rate usually indicates a shortage of job opportunities and a surplus of labor 

force, leading to higher labor movements away from the region (Decressin and Fatás, 1995; 

Eliasson et al., 2003; Finnie 2004; Simonen et al., 2016). Third, it is commonly accepted that 

transportation infrastructure improvements tend to increase regional accessibility and connectivity, 

which in turn reduces travel times and transportation costs (Arbués et al., 2015; Guirao et al., 

2017). This not only facilitates cross-regional labor mobility and enlarges the available labor pool 

in a region, but also attracts more investments and businesses and creates more job opportunities 

(Chen and Haynes, 2017). Other factors extensively researched in previous studies include trade 

and technology advancement (Autor et al., 2015), policy reforms (Seeborg et al., 2000), housing 

prices (Haas and Osland, 2014), and commuting distance (Haller and Heuermann, 2016). 

As a relatively new transportation mode, the HSR can greatly reduce the inter- and 

intra-regional travel time, and therefore many countries are enthusiastic about investing in 

expanding their HSR networks (Chen and Haynes, 2017). The top five countries1 with the most 

operational HSR are China (25,000 km), Spain (3,100 km), Germany (3,038 km), Japan (2,765 

km), and France (2,647 km). Nevertheless, the primary focus of previous studies has been how to 

use the HSR as an impetus to stimulate economic growth, while paying little attention to the 

distributional impact of the HSR on employment (Coto-Millán et al., 2007; Chen and Hall, 2012; 

Meng et al., 2018). Along with the ever-increasing concern about regional income disparities, the 

potential role of the opening of the HSR in distributing job opportunities has been re-emphasized. 

 
1 https://www.worldatlas.com/articles/countries-with-the-most-high-speed-rail.html 
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For example, using a supply-oriented regional econometric model, Sasaki et al. (1997) point out 

that the Japanese Shinkansen network expansion, to some extent, increases jobs in developed 

regions (e.g., Osaka and Tokyo) but reduces job opportunities in less-developed regions (e.g., 

Nagoya). This can be partially explained by the fact that the Shinkansen network expansion, 

especially in remote regions, also improves the accessibility of developed regions. Kim (2000) 

examines the spatial restructuring effect of the HSR developments between Seoul and Pusan and 

finds that population tends to concentrate toward Seoul and its fringe, whereas employment shows 

a greater dispersion over time. Benefiting from the expanded HSR network, some remote areas 

can be integrated into large metropolitan areas, potentially influencing intra-regional distribution 

of job opportunities by the HSR commuting (Garmendía et al., 2008; Guirao et al., 2017).  

    As previously mentioned, a variety of factors contribute to the modeling of job opportunity 

distribution. Of late, the growing application of spatial analysis in the labor market has enabled 

researchers to detect and assess how the local labor market can affect and be affected by 

neighboring labor markets, providing useful insights into spatial dependence of job opportunities. 

For instance, by using a spatial statistical approach, Kondo (2015) states that municipal 

unemployment rates in Japan display significant positive spatial autocorrelation. Haller and 

Heuermann (2016) examine the job matching process in Germany using the Spatial Durbin Error 

model and find that unemployment and vacancies present strong spatial spillovers. Kawabata and 

Abe (2018) apply the spatial regression approach to explore how commute times affect 

intra-metropolitan spatial patterns of female labor participation and suggest that significant spatial 

clusters can be observed. With the help of the matching function, Higashi (2018) reveals 

significant spatial spillovers in job matching, implying that the local job matching process can be 

affected by unemployment and vacancies in both the local and neighboring regions. The above 

spatial interdependence among labor markets can also be observed in Burda and Profit (1996) for 

the Czech Republic, Burgess and Profit (2001) and Manning and Petrongolo (2017) for the United 

Kingdom (UK), Niebuhr (2003) for European countries, Ilmakunnas and Pesola (2003) and 

Hynninen (2005) for Finland, and Lottmann (2012) for Germany.  

    Consequently, the following gaps can be identified and addressed in this study. First, previous 

studies make efforts to identify factors affecting the distribution of job opportunities under the 

demand-supply framework, which explain job search behavior and labor mobility within and 
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across regions. However, the demand-supply framework provides limited insights into job creation 

by investigating how the central government can better allocate transportation resources, design 

the future HSR networks, and make the HSR investment decisions. To fill this gap, this study 

revisits the job opportunity distribution from the C-D production function perspective, 

highlighting the most important factors affecting the number of job opportunities. This 

simplification framework not only avoids an overly detailed investigation of the labor market, but 

also provides a macro perspective on job opportunity distribution. Second, regarding the spatial 

spillovers of the opening of the HSR, existing studies focus mainly on its impacts on economic 

growth rather than employment. This study, therefore, seeks to bridge this gap by considering the 

distributional impact of the opening of the HSR on job opportunities. In this way, this study sheds 

light on how the HSR can be used to promote job opportunities. 

 

3. Methodology 

    As previously stated, this study uses SPDM as the basis for investigating spatial dependence 

of job opportunities created by the HSR. This section demonstrates how the C-D production 

function framework is used to highlight the most important factors affecting job opportunities, 

thereby avoiding an overly detailed investigation of influences on the demand and supply of labor 

force. On the other hand, this section also demonstrates how the alternative spatial weight matrix 

based on the inverted absolute differences in the GDP is constructed. 

3.1 Moran’s I 

As suggested by Moran (1950), Moran’s I can provide preliminary evidence for spatial 

dependence of job opportunities, which is expressed as 

1 1

2
1

( )( )

( )

n n
ij i ji j

n
ii

w x x x x
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x x
= =

=

− −
=

−

∑ ∑
∑

                         (1) 

where n  is the number of regions; ix  and jx  are the values of region i  and j  of variable 

of interest (i.e., job opportunities), respectively; x  is the mean of x ; and ijw  is the ij th 

element of the row-standardized spatial weight matrix W . Moran’s I lies within the range [-1, 1] 

and a positive (negative) Moran’s I indicates that positive (negative) spatial autocorrelation exists 

across regions.  
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3.2 Model specification 

    To provide further evidence regarding the spatial dependence of job opportunities, we start by 

introducing the C-D production function and applying a general SPDM without extra restrictions 

on the model specification. More specifically, given the available production technology, the 

following standard C-D production function with one output and two inputs will be considered in 

this study (Hu and Liu, 2009; Yu et al., 2013; Arbués et al., 2015; Li et al., 2018). 

( , )Y f K L=                                  (2) 

where Y  denotes the output of the economy, reflecting the economy size ( ES ); K  is the 

amount of capital stock ( CS ); and L  stands for the amount of labor input that can be used to 

practically measure how many job opportunities ( JO ) are provided within a given period. In 

addition, f  represents the available technology for turning capital and labor into output and it is 

commonly supposed to be an inverse function in practice. As a result, JO  can be calculated as 

1( , )JO f CS ES−=                                  (3) 

The log-linearized specification with consideration of the opening of the HSR is expressed as 

0 1 2 3ln ln lnJO ES CS HSRα α α α ε= + + + +                   (4) 

where HSR  refers to the opening of the HSR, taking on the value of one if the HSR service is 

provided and zero otherwise, and ε  is the error term and it is assumed to follow a normal 

distribution with zero mean and constant variance (Arbués et al., 2015). Notably, as an additional 

explanatory variable, the opening of the HSR is introduced into Equation 4 rather than the C-D 

production function, indicating the appropriateness of using the semi-log form of regression. The 

coefficient of HSR  measures the relative change in JO  for a given absolute change in the 

value of HSR .  

    With respect to the presence of spatial dependence of job opportunities, the following general 

SPDM is considered (Yu et al., 2013). 

, , 1 , 1 , 2 , 3 ,
1

ln ln ln ln ln
n

i t i t ij j t i t i t i t
j

JO JO w JO ES CS HSRτ ρ α α α−
=

= + + + +∑  

               1 , 2 , 3 , ,
1 1 1

ln ln
n n n

ij j t ij j t ij j t i t i t
j j j

w ES w CS w HSR uβ β β γ ε
= = =

+ + + + + +∑ ∑ ∑  
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1

n

i t ij j t i t
j

wε λ ε υ
=

= +∑                                                   (5) 

where n  denotes the number of provincial capital cities in this study; t  is the index of year; i  

and j  represent local and neighboring cities ( i j≠ ), respectively; iu  is the individual effect 

and tγ  is the time effect; ijw  and other variables are defined as before; and ,i tε  reflects the 

spatially autocorrelated error terms. Additionally, ρ  and λ  are called the spatial 

autocorrelation coefficients and τ  is the autoregressive parameter. It should be mentioned that 

one-period lagged GDP is used as a proxy measure of economy size to reduce possible 

endogeneity problem (Bellemare et al., 2017).  

    Furthermore, due to different geographic, cultural, and economic conditions in different 

regions, job opportunities usually spatially interact in different forms, which include the 

endogenous interaction effects among the dependent variables ( ,
1

ln
n

ij j t
j

w JO
=
∑ ), the exogenous 

interaction effects among the independent variables ( ,
1

ln
n

ij j t
j

w ES
=
∑ , ,

1
ln

n

ij j t
j

w CS
=
∑ , 

,
1

n

ij j t
j

w HSR
=
∑ ), and the interaction effects among the error terms ( ,

1

n

ij j t
j

w ε
=
∑ ). To identify the 

potential form of spatial interaction of job opportunities among different regions, four simplified 

SPDMs can be obtained by imposing constraints on the general model. They are the spatial Durbin 

model (SDM) if 0λ = , the spatial autoregression model (SAR) if 0λ =  and 0iβ =  

( 1, 2,3i = ), the spatial autocorrelation model (SAC) if 0τ =  and 0iβ =  ( 1, 2,3i = ), and the 

spatial error model (SEM) if 0τ ρ= =  and 0iβ =  ( 1, 2,3i = ). Using the maximum 

likelihood estimation (MLE) method, the SPDMs will be estimated and tested in Stata15. The 

MLE technique is also helpful to reduce endogeneity problem.  

    In addition, it should be noted that the estimated coefficient of an independent variable does 

not directly reflect its marginal effect on the dependent variable (Golgher and Voss, 2016). To 

deeply understand spatial spillovers, LeSage and Pace (2009) suggest that the direct, indirect, and 

total effects of a change in an independent variable should be calculated. According to Golgher 
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and Voss (2016), the direct effect of a change in an independent variable for a region on its own 

dependent variable includes not only the estimated coefficient but also the spillover feedback 

effects which pass through other regions and back to that region. The indirect effect measures the 

impact of a change in an independent variable in all other regions on the local region’s dependent 

variable, which is commonly understood as spillover effects (Arbués et al., 2015). Then, the total 

effect, including both the direct and indirect effects, measures the impact of a change in an 

independent variable in all regions on the local region’s dependent variable. 

3.3 Spatial weight matrix 

    The binary contiguity (BC) weights are used to construct the spatial weight matrix, which 

assumes that only contiguous provinces (represented by the PCCs) can influence each other 

(Anselin and Griffith, 1988). Then, two PCCs ( i  and j ) can be identified as neighbors if the 

two provinces share boundaries and the corresponding element of the spatial weight matrix ( ijw ) 

takes on the value of one and zero otherwise (Yu et al., 2013; Rhee et al., 2016). Practically, the 

spatial weight matrix is usually row normalized, satisfying the condition of 

1
1, 1, ,n

ijj
w i n

=
= = ⋅⋅⋅∑ . In doing so, ijw  can be interpreted as the fraction of all spatial 

influences on city i  attributable to city j . 

    This study also uses an alternative spatial weight matrix based on the inverted absolute 

differences in the GDP to examine how economic distance affects the distribution of job 

opportunities among PCCs (Próchniak and Witkowski, 2014). Such a matrix stems mainly from 

the row-normalized form of the power distance weights2 with the following specifications of 

distance and weight functions (Deng, 2014). 

ij i jd GDP GDP= −                              (6) 

1 1( ) /ij ij ikk j
w d d− −

≠
= ∑                            (7) 

where iGDP  and jGDP  are the average outputs of cities i  and j  over the sample period, 

respectively. ijd  and 1
ijd −  indicate the economic distance and its inverse. ijw  is the 

corresponding element of the spatial weight matrix based on the economic distance. 

 
2 https://www.seas.upenn.edu/~ese502/lab-content/extra_materials/SPATIAL%20WEIGHT%20MATRICES.pdf 
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4. Empirical analysis 

4.1 Data collection 

    To examine spatial dependence of job opportunities, this study estimates the SPDM using a 

balanced panel dataset of 30 Chinese PCCs3 from 2002 to 2016, which yields 450 observations. 

The related data are collected from the China City Statistical Yearbooks from 2003 to 2017 and 

summarized in Table 1. First, job opportunities are measured by the year-end data of total 

employment in each PCC over the sample period. Second, as previously discussed, the economy 

size can be represented by the output of the economy. For this reason, nominal GDP is collected 

and converted to constant prices of 1978 using the GDP deflator to reduce the impact of inflation. 

Third, capital stock can be calculated using the following perpetual inventory method with an 

initial investment stock of each PCC in 2002 and a depreciation rate of 10.96% (Goldsmith, 1951; 

Shan, 2008; Yu et al., 2013). 

, , 1 ,(1 )i t i t i tK K Iδ −= − +                            (8) 

where δ  indicates the depreciation rate and ,i tI  indicates new investments in year t . The data 

for the calculated capital stock is converted to the constant prices of 1978 using the price index for 

investment in fixed assets. Finally, data relating to the opening of the HSR are collected from the 

HSR official website and other relevant sources4. 

Insert Table 1 about here 

    As a preliminary detection approach, Moran’s I can provide some initial insights into the 

detection of spatial autocorrelation. Table 2 reports the results of Moran’s I with the economic 

distance (ED) weight matrix5. As shown in Table 2, job opportunities display significant spatial 

dependence, implying that the number of job opportunities in a PCC can be affected by 

neighboring PCCs’ job opportunities. 

Insert Table 2 about here 

4.2 Spatial spillovers at the national level     

    After performing different forms of the SPDM, the SAR is identified as the most appropriate 
 

3 Tibet is excluded from this study due to the unavailability of related data. 
4 http://www.gaotie.cn/; http://www.mot.gov.cn/; https://www.12306.cn/index/ 
5 Spatial autocorrelation has been widely detected when using the BC weight matrix (Yu et al., 2013; Arbués et al., 

2015; Rhee et al., 2016). Then, the corresponding Moran’s I is not repeated here. 

http://www.gaotie.cn/
http://www.mot.gov.cn/
https://www.12306.cn/index/
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model to capture spatial dependence of job opportunities at the national level, which is 

demonstrated in Table 3. According to the Hausman test, it is significant at the 1% level in the 

case of the BC weight matrix, and it is also significant at the 5% level in the case of the ED weight 

matrix, suggesting the spatial fixed effect model regardless of the spatial weight matrix (Arbués et 

al., 2015). Second, as shown in Table 3, the spatial autocorrelation coefficient ( ρ ) is 0.1667 with 

a corresponding p-value of 0.017 in the case of the BC weight matrix and 0.1941 with a p-value of 

0.042 when using the ED weight matrix. That is, spatial dependence of job opportunities can be 

detected and confirmed at the 5% level in both cases, implying that job opportunities provided in a 

PCC can affect and be affected by neighbors’ job opportunities. Third, in the case of the BC 

weight matrix, it is observed that ln ES  and HSR  are significant at the 5% level with 

respective coefficients of 0.4034 and 0.0914, while ln CS  is insignificant. Similar findings can 

be obtained in the case of the ED weight matrix. That is, at the 5% level, significant ln ES  and 

HSR  are found, while insignificant ln CS  is observed. This reveals that, at the national level, 

economy size and the opening of the HSR can contribute to local job opportunities, while the 

contribution of capital stock is insignificant. 

Insert Table 3 about here 

    As addressed above, however, the estimated coefficients of ln ES  and HSR  do not 

straightforwardly reflect their marginal effects on job opportunities. For this reason, the average 

direct, indirect, and total effects of ln ES  and HSR  on job opportunities are calculated. As 

shown in Table 3, ln ES  has significantly positive direct effects (with estimates of 0.4108 and 

0.3916), indirect effects (with estimates of 0.0759 and 0.0879), and total effects (with estimates of 

0.4868 and 0.4795) on job opportunities in both cases. Turning to HSR , it has significantly 

positive direct effects (magnitudes are 0.0953 and 0.0960) and total effects (magnitudes are 0.1124 

and 0.1202) but insignificant indirect effects in both cases. In this regard, the estimated 

coefficients of ln ES  and HSR  underestimate the marginal effects, represented by the direct 

effects, on job opportunities due to its exclusion of the positive spillover feedback effects. 

Meanwhile, spatial spillovers, represented by the indirect effect, of ln ES  and HSR  can be 

measured separately.  

4.3 Spatial spillovers at the regional level     

    As discussed above, regional disparities of job opportunities in China has challenged the 
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harmonious development objective and become a major concern for the central government (Fan 

et al., 2011). In response to this concern, a cross-regional analysis 6 , including the 

eastern/northeastern, central, and western regions (Figure 1), is carried out to examine how job 

opportunities distribute across regions, shedding some light on the harmonious development. For 

each region, the most appropriate specification of the SPDM is estimated and reported in Tables 4, 

5, and 6, respectively. 

Insert Figure 1 about here  

Insert Table 4 about here 

Insert Table 5 about here 

Insert Table 6 about here 

    In the eastern/northeastern region, the SDM with the BC weight matrix outperforms other 

specifications, but there is no evidence to support the use of the ED weight matrix. First, as 

reported in Table 4, the Hausman test is significant at the 10% level, indicating that the spatial 

fixed effect model can be selected to capture the individual effect. Second, at the 1% level, a 

significant ρ  is observed with the coefficient of 0.1792, confirming significant spatial 

dependence of job opportunities in this region. Third, turning to explanatory variables, ln ES , 

lnw CS×  and w HSR×  are significant at the 1% level, with coefficients of 0.6913, -0.2028, 

and 0.1866, respectively. This implies that job opportunities in a PCC in this region are mainly 

driven by the local economy size while the contributions of the local capital stock and the HSR 

service are insignificant. In particular, local job opportunities can be negatively affected by 

neighbors’ capital stocks but positively affected by neighboring HSR services. Finally, focusing 

mainly on the indirect effects, there are significant positive spillovers for ln ES  and HSR , with 

estimates of 0.1299 and 0.1925, respectively, but significant negative spillovers for ln CS with an 

estimate of -0.2088. That is, for a PCC in this region, local job opportunities are increased by 

neighboring economy sizes and HSR services but are decreased by neighboring capital stocks. 

    In the central region, shown in Table 5, the SDM is empirically supported. Based on the 

 
6 Eastern/northeastern: Beijing, Tianjin, Hebei, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, 

Hainan, Liaoning, Jilin, Heilongjiang; Central: Shanxi, Henan, Anhui, Jiangxi, Hubei, Hunan; Western: Inner 

Mongolia, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Tibet, Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang 

(http://www.stats.gov.cn/ztjc/zthd/sjtjr/dejtjkfr/tjkp/201106/t20110613_71947.htm). 

http://www.stats.gov.cn/ztjc/zthd/sjtjr/dejtjkfr/tjkp/201106/t20110613_71947.htm
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Hausman test, the spatial fixed effect model is suggested to describe individual effects regardless 

of weight matrix. The significant ρ  is obtained with estimates of 0.3179 for the BC weight 

matrix and 0.2772 for the ED weight matrix, implying that a PCC’s job opportunities can be 

affected by neighbors’ job opportunities. It is also the case that local job opportunities can be 

increased by the local economy size and capital stock but be decreased by neighbors’ capital 

stocks regardless of the spatial weight matrix. In addition, the indirect effects show that there are 

significant positive spatial spillovers for ln ES , with the estimates of 0.1674 when using the BC 

weight matrix and 0.1226 when using the ED weight matrix. However, significant negative spatial 

spillovers are found for ln CS , with estimates of -0.3910 and -0.4030 depending on the selection 

of the spatial weight matrix. 

    With respect to the western region, reported in Table 6, the SEM with the BC weight matrix 

and the SAR with the ED weight matrix are identified as appropriate models. As suggested by the 

Hausman test, the fixed effect model is used. When using the BC weight matrix, it is found that 

ln CS  has a significant positive contribution to job opportunities while the contributions of 

ln ES  and HSR  are insignificant. The significant λ  with the estimate of -0.1214 means that 

negative spatial influence comes through the error terms in this region. Similar results can be 

obtained when using the ED weight matrix. That is, significant ln CS , with the estimate of 

0.1547, but insignificant ln ES  and HSR  are found. The significant spatial autocorrelation is 

detected and confirmed by the significant ρ  with the estimate of 0.2847. The indirect effect 

shows evidence of significant positive spatial spillovers for ln CS  with the estimate of 0.0585. 

 

5. Discussions and policy implications 

    First, empirical results provide evidence for the use of static spatial panel data models to 

examine how job opportunities interact among PCCs (Arbués et al., 2015). That is, the number of 

job opportunities in the previous year has no significant contribution to the current year’s job 

opportunities. Interestingly, the presence of significant spatial dependence implies that the current 

year’s job opportunities in a PCC can be affected by its neighbors’ job opportunities in the same 

year. As a result, a local government should focus not only on its own job opportunities but pay 

some attention to its neighbors’ job opportunities when using different policy tools to promote 

employment. In the meantime, cross-regional collaboration is highly encouraged to promote 
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equilibrium employment in a wider region.  

    Second, job opportunities are mainly driven by the local economy size in all regions except 

the western region, while the contribution of the local capital stock is significant only in the 

central and western regions, requiring governments at different levels to revisit the role of capital 

stock in promoting employment. Specifically, job opportunities in the central and western regions 

can be increased by expanding capital investments, which does not hold in the 

eastern/northeastern region. This can be partly explained by the diminishing marginal product of 

capital (Shi et al., 2016). On average, PCCs in the eastern/northeastern region have a higher level 

of capital stock, producing less output from an additional unit of capital input and then absorbing 

less labor input. Moreover, the cross-regional analysis shows that an increase in neighboring 

capital stocks tends to decrease local job opportunities only in the eastern/northeastern and central 

regions. Thus, the central government can use capital investment as a tool to balance the 

distribution of job opportunities among different PCCs to achieve the harmonious development 

objective.  

    Third, regarding the opening of the HSR, it can promote job opportunities at the national 

level, but not necessarily in each region. There is evidence to indicate that the opening of the HSR 

in neighboring cities can create more job opportunities only in the eastern/northeastern region. 

Moreover, by putting the emphasis on spatial spillovers, it can be clearly seen that the indirect 

effect accounts for nearly 94% of the total effect that the opening of the HSR on the number of job 

opportunities in this region. In this sense, the HSR investments can be a driving force for 

nationwide job creation. However, more importantly, the central government needs to consider 

regional disparities when investing in the HSR to promote job opportunities. This finding also 

emphasizes the coordinative role of the central government in planning the future HSR networks 

and allocating transportation resources across regions. 

 

6. Conclusion 

    The creation and distribution of job opportunities have traditionally been the primary concern 

for the local and central governments, which is examined in this study. In view of this, we start by 

introducing the C-D production function framework to single out the most important factors 

affecting the number of job opportunities, avoiding an overly detailed investigation of influences 
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on labor demand and supply. Then, the use of a general SPDM without extra restrictions on the 

model specification allows us to investigate spatial dependence of job opportunities among 30 

Chinese PCCs from 2002 to 2016, giving special attention to spatial spillovers of the opening of 

the HSR. Our findings can be summarized here. 

    First, after examining different forms of the SPDM, the most appropriate spatial panel data 

model can be identified. It is widely believed that there could be great regional disparities in terms 

of job opportunities in China due to different geographic, cultural and economic conditions, 

requiring different model specifications. At the national level, the SAR is appropriate to capture 

spatial dependence of job opportunities. At the regional level, there is evidence to support the use 

of the SDM in the eastern/northeastern and the central regions, while the SEM and the SAR are 

identified as suitable models in the western region depending on the use of the spatial weight 

matrix. Second, significant spatial dependence of job opportunities is detected and confirmed in 

each region, implying that job opportunities provided in a PCC can affect and be affected by 

neighbors’ job opportunities. Third, the empirical results show that the local economy size makes 

significant positive contribution to job opportunities in all regions except for the western region, 

while the contribution of capital stock is significant only in the central and western regions. As a 

relatively new transportation mode, the HSR can contribute to job opportunities at the national 

level, but there is no evidence to support its contribution in each region. Finally, the indirect 

effects show that significant spatial spillovers exist for economy size in all region except for the 

western region, for capital size in all regions, and for the HSR only in the eastern/northeastern 

region. 

    This study has major implications for government decisions. Firstly, the findings can deepen 

the understanding of how local job opportunities can affect and be affected by neighbors, 

encouraging cross-regional collaboration to promote employment. Secondly, this study can assist 

the central government in better planning future HSR networks and allocating transportation 

resources by adequately incorporating spatial spillovers of the opening of the HSR among 

different regions. In addition, with the development of China’s Belt and Road Initiative (BRI), the 

Chinese government has made great efforts to promote the HSR projects in the BRI countries, 

which aims to improve regional connectivity and accessibility (Liu and Lim, 2019). Due to diverse 

economies and cultures among different BRI countries, the cross-regional analysis of China’s 
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HSR experience can be a useful example to help them to develop the HSR networks.  

    Despite these implications, this study can be extended in at least two directions. One natural 

extension is to investigate the industry-level distribution of job opportunities as influenced by the 

opening of the HSR. The other extension is to use the real data on HSR investments, allowing us 

to split the HSR investments from general capital investments and provide more quantitative 

evidence of the specific impacts of HSR. 
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Table 1 Summary statistics of variables 
Variable Mean Median Standard Deviation Minimum Maximum 
Job opportunities (JO) 270.47 178.81 271.83 37.4492 1729.08 
Economy size (ES) 28399116.54 18713547.45 28337160.55 1205703.62 164558157.4 
Capital stock (CS) 79695117.82 48943630.87 83682618.82 1942797.45 514244185.8 

Notes: JO is measured in 10,000 persons; ES and CS are measured in 100 million yuan (Chinese 
RMB). 
 
 
 
 
 
 
 

Table 2 Test for spatial autocorrelation Moran’s I 
Year  Moran’s I p-value Year  Moran’s I p-value 
2002 0.164*** 0.007 2010 0.263*** 0.000 
2003 0.182*** 0.003 2011 0.305*** 0.000 
2004 0.151*** 0.003 2012 0.275*** 0.000 
2005 0.167*** 0.003 2013 0.247*** 0.000 
2006 0.246*** 0.000 2014 0.172*** 0.006 
2007 0.250*** 0.000 2015 0.226*** 0.001 
2008 0.253*** 0.000 2016 0.306*** 0.000 
2009 0.255*** 0.000    

Note: ***statistical significance at the 1% level. 
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Table 3 Estimation results of the SAR at the national level 
Variable  BC weight Direct effect Indirect effect Total effect ED weight Direct effect Indirect effect Total effect 
ln ES  0.4034*** 0.4108*** 0.0759* 0.4868*** 0.3843*** 0.3916*** 0.0879* 0.4795*** 
 (0.001) (0.001) (0.067) (0.001) (0.005) (0.005) (0.089) (0.003) 
ln CS  0.01297 0.0099 0.0014 0.0114 0.0140 0.0184 0.0037 0.0145 
 (0.831) (0.874) (0.907) (0.878) (0.826) (0.869) (0.840) (0.860) 
HSR  0.0914** 0.0953** 0.0171 0.1124** 0.0921** 0.0960*** 0.0242 0.1202** 
 (0.023) (0.016) (0.104) (0.014) (0.013) (0.008) (0.202) (0.015) 
ρ  0.1667**    0.1941**    
 (0.017)    (0.042)    
R2 0.6532    0.8031    
Log-pseudolikelihood 235.0539    235.0539    
Hausman test 14.85***    12.97**    
 (0.005)    (0.0114)    

Note: p-values are in parentheses. *Statistical significance at the 10% level. **Statistical significance at the 5% level. ***Statistical significance at the 1% level. 
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Table 4 Estimation results of SDM for eastern/northeastern cities (BC weight matrix) 
Variable  Coefficient Direct effect Indirect effect Total effect 
ln ES  0.6913*** 0.7092*** 0.1299** 0.8392*** 
 (0.000) (0.000) (0.030) (0.000) 
ln CS  0.0201 -0.0004 -0.2088*** -0.2092* 
 (0.807) (0.996) (0.002) (0.090) 
HSR  -0.0060 0.0129 0.1925*** 0.2054*** 
 (0.899) (0.767) (0.000) (0.000) 

lnw CS×  -0.2028***    
 (0.001)    
w HSR×  0.1866***    
 (0.000)    
ρ  0.1792***    
 (0.004)    
R2 0.5908    
Log-pseudolikelihood 98.5004    
Hausman test 11.22*    
 (0.0818)    

Note: p-values are in parentheses. *Statistical significance at the 10% level. **Statistical significance at the 5% level. ***Statistical significance at the 1% level. 
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Table 5 Estimation results of SDM for central cities 
Variable  BC weight Direct effect Indirect effect Total effect ED weight Direct effect Indirect effect Total effect 
ln ES  0.3902** 0.4146** 0.1674* 0.5821** 0.3443** 0.3609** 0.1226* 0.4835** 
 (0.018) (0.017) (0.067) (0.014) (0.026) (0.025) (0.065) (0.020) 
ln CS  0.3656*** 0.3194*** -0.3910*** -0.0716 0.4405*** 0.4025*** -0.4030*** -0.0006 
 (0.000) (0.000) (0.000) (0.544) (0.000) (0.000) (0.000) (0.995) 
HSR  0.0854 0.0957* 0.0455 0.1413 0.0883 0.0969 0.0384 0.1353 
 (0.120) (0.097) (0.259) (0.133) (0.129) (0.104) (0.242) (0.130) 

lnw CS×  -0.4045***    -0.4347***    
 (0.000)    (0.000)    
ρ  0.3179***    0.2772***    
 (0.003)    (0.002)    
R2 0.8556    0.8539    
Log-pseudolikelihood 72.8715    72.8715    
Hausman test 68.27***    223.30***    
 (0.000)    (0.000)    

Note: p-values are in parentheses. *Statistical significance at the 10% level. **Statistical significance at the 5% level. ***Statistical significance at the 1% level. 
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Table 6 Estimation results of SPDM for western cities 
Variable  BC weight Variable  ED weight Direct effect Indirect effect Total effect 
ln ES  0.1273 ln ES  0.0912 0.0979 0.0406 0.1386 
 (0.282)  (0.462) (0.452) (0.485) (0.453) 
ln CS  0.2223*** ln CS  0.1548** 0.1547** 0.0585* 0.2132** 
 (0.000)  (0.015) (0.019) (0.062) (0.016) 
HSR  0.1399 HSR  0.1282 0.1397 0.0649 0.2047 
 (0.138)  (0.154) (0.123) (0.267) (0.159) 
λ (SEM) -0.1214* ρ (SAR) 0.2847***    
 (0.069)  (0.001)    
R2 0.7815 R2 0.7019    
Log-pseudolikelihood 77.5349 Log-pseudolikelihood 72.8715    
Hausman test 11.92** Hausman test 46.13***    
 (0.018)  (0.000)    

Note: p-values are in parentheses. *Statistical significance at the 10% level. **Statistical significance at the 5% level. ***Statistical significance at the 1% level. 
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