577 research outputs found
SimCrime: A Spatial Microsimulation Model for the Analysing of Crime in Leeds.
This Working Paper is a part of PhD thesis 'Modelling Crime: A Spatial Microsimulation Approach' which aims to investigate the potential of spatial microsimulation for modelling crime. This Working Paper presents SimCrime, a static spatial microsimulation model for crime in Leeds. It is designed to estimate the likelihood of being a victim of crime and crime rates at the small area level in Leeds and to answer what-if questions about the effects of changes in the demographic and socio-economic characteristics of the future population. The model is based on individual microdata. Specifically, SimCrime combines individual microdata from the British Crime Survey (BCS) for which location data is only at the scale of large areas, with census statistics for smaller areas to create synthetic microdata estimates for output areas ?(OAs) in Leeds using a simulated annealing method. The new microdata dataset includes all the attributes from the original datasets. This allows variables such as crime victimisation from the BCS to be directly estimated for OAs
Double exchange model on triangular lattice: non-coplanar spin configuration and phase transition near quarter filling
Unconventional anomalous Hall effect in frustrated pyrochlore oxides is
originated from spin chirality of non-coplanar localized spins, which can also
be induced by the competition between ferromagnetic (FM) double exchange
interaction and antiferromagnetic superexchange interaction .
Here truncated polynomial expansion method and Monte Carlo simulation are
adopted to investigate the above model on two-dimensional triangular lattice.
We discuss the influence of the range of FM-type spin-spin correlation and
strong electron-spin correlation on the truncation error of spin-spin
correlation near quarter filling. Two peaks of the probability distribution of
spin-spin correlation in non-coplanar spin configuration clearly show that
non-coplanar spin configuration is an intermediate phase between FM and
120-degree spin phase. Near quarter filling, there is a phase transition from
FM into non-coplanar and further into 120-degree spin phase when
continually increases. Finally the effect of temperature on magnetic structure
is discussed.Comment: 10 pages, 5 figure
Effects of fuel composition on high-pressure non-premixed natural gas combustion
The effects of adding ethane or nitrogen on the ignition and combustion of a non-premixed high-pressure
methane-air jet have been investigated using fundamental studies in a shock tube and advanced
computational modelling. The results are then used to interpret the performance of a pilot-ignited natural gas
engine fuelled with similar fuels. The results show that the influence of the additives on the gaseous jet auto-ignition
process is relatively small, but that they have a greater effect on the research engine, where both
fuels have similar influences on the spatial relationship between the gaseous jet and the pilot flame
Moduli Dynamics of AdS_3 Strings
We construct a general class of solutions for a classical string in AdS_3
spacetime. The construction is based on a Pohlmeyer type reduction, with the
sinh-Gordon model providing the general N-soliton solutions. The corresponding
exact spiky string configurations are then reconstructed through the inverse
scattering method. It is shown that the string moduli are determined entirely
by those of the solitons.Comment: 22 pages, no figures; references adde
Active Amplification of the Terrestrial Albedo to Mitigate Climate Change: An Exploratory Study
This study explores the potential to enhance the reflectance of solar
insolation by the human settlement and grassland components of the Earth's
terrestrial surface as a climate change mitigation measure. Preliminary
estimates derived using a static radiative transfer model indicate that such
efforts could amplify the planetary albedo enough to offset the current global
annual average level of radiative forcing caused by anthropogenic greenhouse
gases by as much as 30 percent or 0.76 W/m2. Terrestrial albedo amplification
may thus extend, by about 25 years, the time available to advance the
development and use of low-emission energy conversion technologies which
ultimately remain essential to mitigate long-term climate change. However,
additional study is needed to confirm the estimates reported here and to assess
the economic and environmental impacts of active land-surface albedo
amplification as a climate change mitigation measure.Comment: 21 pages, 3 figures. In press with Mitigation and Adaptation
Strategies for Global Change, Springer, N
Charged Higgs Boson Production in Bottom-Gluon Fusion
We compute the complete next-to-leading order SUSY-QCD corrections for the
associated production of a charged Higgs boson with a top quark via
bottom-gluon fusion. We investigate the applicability of the bottom parton
description in detail. The higher order corrections can be split into real and
virtual corrections for a general two Higgs doublet model and into additional
massive supersymmetric loop contributions. We find that the perturbative
behavior is well under control. The supersymmetric contributions consist of the
universal bottom Yukawa coupling corrections and non-factorizable diagrams.
Over most of the relevant supersymmetric parameter space the Yukawa coupling
corrections are sizeable, while the remaining supersymmetric loop contributions
are negligible.Comment: 18 pages, v2: some discussions added, v3: published versio
Solar Intranetwork Magnetic Elements: bipolar flux appearance
The current study aims to quantify characteristic features of bipolar flux
appearance of solar intranetwork (IN) magnetic elements. To attack such a
problem, we use the Narrow-band Filter Imager (NFI) magnetograms from the Solar
Optical Telescope (SOT) on board \emph{Hinode}; these data are from quiet and
an enhanced network areas. Cluster emergence of mixed polarities and IN
ephemeral regions (ERs) are the most conspicuous forms of bipolar flux
appearance within the network. Each of the clusters is characterized by a few
well-developed ERs that are partially or fully co-aligned in magnetic axis
orientation. On average, the sampled IN ERs have total maximum unsigned flux of
several 10^{17} Mx, separation of 3-4 arcsec, and a lifetime of 10-15 minutes.
The smallest IN ERs have a maximum unsigned flux of several 10^{16} Mx,
separations less than 1 arcsec, and lifetimes as short as 5 minutes. Most IN
ERs exhibit a rotation of their magnetic axis of more than 10 degrees during
flux emergence. Peculiar flux appearance, e.g., bipole shrinkage followed by
growth or the reverse, is not unusual. A few examples show repeated
shrinkage-growth or growth-shrinkage, like magnetic floats in the dynamic
photosphere. The observed bipolar behavior seems to carry rich information on
magneto-convection in the sub-photospheric layer.Comment: 26 pages, 14 figure
Instabilities and Bifurcations of Nonlinear Impurity Modes
We study the structure and stability of nonlinear impurity modes in the
discrete nonlinear Schr{\"o}dinger equation with a single on-site nonlinear
impurity emphasizing the effects of interplay between discreteness,
nonlinearity and disorder. We show how the interaction of a nonlinear localized
mode (a discrete soliton or discrete breather) with a repulsive impurity
generates a family of stationary states near the impurity site, as well as
examine both theoretical and numerical criteria for the transition between
different localized states via a cascade of bifurcations.Comment: 8 pages, 8 figures, Phys. Rev. E in pres
Relative entropies, suitable weak solutions, and weak strong uniqueness for the compressible Navier-Stokes system
We introduce the notion of relative entropy for the weak solutions of the
compressible Navier-Stokes system. We show that any finite energy weak solution
satisfies a relative entropy inequality for any pair of sufficiently smooth
test functions. As a corollary we establish weak-strong uniqueness principle
for the compressible Navier-Stokes system
The Role of Color Neutrality in Nuclear Physics--Modifications of Nucleonic Wave Functions
The influence of the nuclear medium upon the internal structure of a
composite nucleon is examined. The interaction with the medium is assumed to
depend on the relative distances between the quarks in the nucleon consistent
with the notion of color neutrality, and to be proportional to the nucleon
density. In the resulting description the nucleon in matter is a superposition
of the ground state (free nucleon) and radial excitations. The effects of the
nuclear medium on the electromagnetic and weak nucleon form factors, and the
nucleon structure function are computed using a light-front constituent quark
model. Further experimental consequences are examined by considering the
electromagnetic nuclear response functions. The effects of color neutrality
supply small but significant corrections to predictions of observables.Comment: 37 pages, postscript figures available on request to
[email protected]
- …