1,569 research outputs found

    Electronic structures of B-2p and C-2p of boron-doped diamond film by soft X-ray absorption and emission spectroscopy

    Full text link
    X-ray absorption (XAS) and emission (XES) spectroscopy near B-K and C-K edges have been performed on metallic (~1at%B, B-diamond) and semiconducting (~0.1at%B and N, BN-diamond) doped-diamond films. Both B-K XAS and XES spectra shows metallic partial density of state (PDOS) with the Fermi energy of 185.3 eV, and there is no apparent boron-concentration dependence in contrast to the different electric property. In C-K XAS spectrum of B-diamond, the impurity state ascribed to boron is clearly observed near the Fermi level. The Fermi energy is found to be almost same with the top of the valence band of non-doped diamond, E_V, 283.9 eV. C-K XAS of BN-diamond shows both the B-induced shallow level and N-induced deep-and-broad levels as the in-gap states, in which the shallow level is in good agreement with the activation energy (E_a=0.37 eV) estimated from the temperature dependence of the conductivity, namely the change in C-2p PDOS of impurity-induced metallization is directly observed. The electric property of this diamond is mainly ascribed to the electronic structure of C-2p near the Fermi level. The observed XES spectra are compared with the DVX-alpha cluster calculation. The DVX-alpha result supports the strong hybridization between B-2p and C-2p observed in XAS and XES spectra, and suggests that the small amount of borons (<1at%) in diamond occupy the substitutional site rather than interstitial site.Comment: submitted to Phys. Rev. B, 5 pages and 5 figure

    Structure Formation, Melting, and the Optical Properties of Gold/DNA Nanocomposites: Effects of Relaxation Time

    Full text link
    We present a model for structure formation, melting, and optical properties of gold/DNA nanocomposites. These composites consist of a collection of gold nanoparticles (of radius 50 nm or less) which are bound together by links made up of DNA strands. In our structural model, the nanocomposite forms from a series of Monte Carlo steps, each involving reaction-limited cluster-cluster aggregation (RLCA) followed by dehybridization of the DNA links. These links form with a probability peffp_{eff} which depends on temperature and particle radius aa. The final structure depends on the number of monomers (i. e. gold nanoparticles) NmN_m, TT, and the relaxation time. At low temperature, the model results in an RLCA cluster. But after a long enough relaxation time, the nanocomposite reduces to a compact, non-fractal cluster. We calculate the optical properties of the resulting aggregates using the Discrete Dipole Approximation. Despite the restructuring, the melting transition (as seen in the extinction coefficient at wavelength 520 nm) remains sharp, and the melting temperature TMT_M increases with increasing aa as found in our previous percolation model. However, restructuring increases the corresponding link fraction at melting to a value well above the percolation threshold. Our calculated extinction cross section agrees qualitatively with experiments on gold/DNA composites. It also shows a characteristic ``rebound effect,'' resulting from incomplete relaxation, which has also been seen in some experiments. We discuss briefly how our results relate to a possible sol-gel transition in these aggregates.Comment: 12 pages, 10 figure

    Relativistic calculation of nuclear transparency in (e,e'p) reactions

    Get PDF
    Nuclear transparency in (e,e'p) reactions is evaluated in a fully relativistic distorted wave impulse approximation model. The relativistic mean field theory is used for the bound state and the Pauli reduction for the scattering state, which is calculated from a relativistic optical potential. Results for selected nuclei are displayed in a Q^2 range between 0.3 and 1.8 (GeV/c)^2 and compared with recent electron scattering data. For Q^2 = 0.3 (GeV/c)^2 the results are lower than data; for higher Q^2 they are in reasonable agreement with data. The sensitivity of the model to different prescriptions for the one-body current operator is investigated. The off-shell ambiguities are rather large for the distorted cross sections and small for the plane wave cross sections.Comment: 8 pages, 3 figure

    Meson Exchange Currents in (e,e'p) recoil polarization observables

    Get PDF
    A study of the effects of meson-exchange currents and isobar configurations in A(e,ep)BA(\vec{e},e'\vec{p})B reactions is presented. We use a distorted wave impulse approximation (DWIA) model where final-state interactions are treated through a phenomenological optical potential. The model includes relativistic corrections in the kinematics and in the electromagnetic one- and two-body currents. The full set of polarized response functions is analyzed, as well as the transferred polarization asymmetry. Results are presented for proton knock-out from closed-shell nuclei, for moderate to high momentum transfer.Comment: 44 pages, 18 figures. Added physical arguments explaining the dominance of OB over MEC, and a summary of differences with previous MEC calculations. To be published in PR

    Soft x-ray spectroscopy experiments on the near K-edge of B in MB2 (M=Mg, Al, Ta, and Nb)

    Full text link
    Soft X-ray absorption and emission measurements are performed for the K- edge of B in MB2_2 (M=Mg, Al, Ta and Nb). Unique feature of MgB2_2 with a high density of B 2pxy(σ)p_{xy}(\sigma)-state below and above the Fermi edge, which extends to 1 eV above the edge, is confirmed. In contrast, the B 2pp density of states in AlB2_2 and TaB2_2, both of occupied and unoccupied states, decreased linearly towards the Fermi energy and showed a dip at the Fermi energy. Furthermore, there is a broadening of the peaks with pσp\sigma-character in XES and XAS of AlB2_2, which is due to the increase of three dimensionality in the pσp\sigma-band in AlB2_2. The DOS of NbB2_2 has a dip just below the Fermi energy. The present results indicate that the large DOS of B-2pσp\sigma states near the Fermi energy are crucial for the superconductivity of MgB2_2.Comment: 3 pages text and 4 pages figures. accepted for publication to Phys. Rev.

    Near-field optical power transmission of dipole nano-antennas

    Get PDF
    Nano-antennas in functional plasmonic applications require high near-field optical power transmission. In this study, a model is developed to compute the near-field optical power transmission in the vicinity of a nano-antenna. To increase the near-field optical power transmission from a nano-antenna, a tightly focused beam of light is utilized to illuminate a metallic nano-antenna. The modeling and simulation of these structures is performed using 3-D finite element method based full-wave solutions of Maxwell’s equations. Using the optical power transmission model, the interaction of a focused beam of light with plasmonic nanoantennas is investigated. In addition, the tightly focused beam of light is passed through a band-pass filter to identify the effect of various regions of the angular spectrum to the near-field radiation of a dipole nano-antenna. An extensive parametric study is performed to quantify the effects of various parameters on the transmission efficiency of dipole nano-antennas, including length, thickness, width, and the composition of the antenna, as well as the wavelength and half-beam angle of incident light. An optimal dipole nanoantenna geometry is identified based on the parameter studies in this work. In addition, the results of this study show the interaction of the optimized dipole nano-antenna with a magnetic recording medium when it is illuminated with a focused beam of light
    corecore