6,607 research outputs found

    Immune drug discovery from venoms

    Get PDF
    This review catalogues recent advances in knowledge on venoms as standalone therapeutic agents or as blueprints for drug design, with an emphasis on venom-derived compounds that affects the immune system. We discuss venoms and venom-derived compounds that affect total immune cell numbers, immune cell proliferation, immune cell migration, immune cell phenotype and cytokine secretion. Identifying novel compounds that 'tune' the system, up-regulating the immune response during infectious disease and cancer and down-regulating the immune response during autoimmunity, will greatly expand the tool kit of human immunotherapeutics. Targeting these pathways may also open therapeutic options that alleviate symptoms of envenomation. Finally, combining recent advances in venomics with progress in low cost, high-throughput screening platforms will no doubt yield hundreds of prototype immune modulating compounds in the coming years

    Enhancement in the Photoluminescence Properties of SiO2:Ge Embedded in a Polymeric Matrix

    Get PDF
    Polymer films of styrene butadiene copolymer (SBC) mixed with SiO2:Ge powder were successfully obtained by the drop casting method. The SBC concentration (in chloroform solution) was 10%w/v and the SiO2:Ge powder was mixed (mass ratio 80:20 respectively). The thicknesses of the films obtained were 50, 100, and 200 μm. In addition, polymer films of polytetrafluoroethylene (PTFE) preparation (60% dispersion in water), were obtained mixing 2 ml of PTFE and 0.05g of SiO2:Ge powder with a mass relation of 98% polymer and 2% SiO2:Ge. The photoluminescence emission spectra (PL) of SBC doped with SiO2:Ge resulted in similar characteristics to those for SiO2:Ge powders, although their intensity shows an increase 3.5 times approximately, compared with the pure powder. On the other hand, the PTFE films with SiO2:Ge present just one peak in the PL emission at 439 nm but their intensity increases 18 times respect to the powder. The photoluminescence excitation (PLE) spectra of the SiO2:Ge powders show the characteristic peaks at 248 nm (most intense) and at 366 nm. However, when the powder is embedded either in SBC or PTFE the peak at 366 nm shows an important increase which seems to indicate an energy transfer from the polymer to the SiO2:Ge

    The Key Role Transferring Knowledge of Nuclear España, The Spanish Nuclear Society Magazine

    Get PDF
    The magazine of the Spanish Nuclear Society (SNE), “Nuclear España” is a scientific-technical publication with almost thirty years of uninterrupted edition and more than 300 numbers published. Their pages approach technical subjects related to the nuclear energy, as well as the activities developed by the SNE, especially in national and international meetings. The main part of the magazine is composed by articles written by known specialist of the energy industry. One of the top goals of the magazine is to help on transferring the knowledge from the generation that built the nuclear power plants in Spain and the new generation of professionals that have started its nuclear career in the last years. Each number is monographic, trying to cover as many aspects on an issue as it is possible, with collaborations from the companies, the research centers and universities that helps to have complementary points of view. On the other hand the articles help to deep in the issue´s topic, broadening the view of the readers about the nuclear field and helping to share knowledge across the industry. The news section of the Magazine picks up the actuality of the sector as a whole. The editorial section reflects the opinion of the SNE Governing Board and the Magazine Committee on the subjects of interest in this field. On the other hand, the monthly interview sets out the professional outstanding opinions. With a total of eleven numbers per year, three of them have a noticeable international character: the one dedicated to the operative experiences on the Spanish and European nuclear power plants, the monographic issue devoted tothe Annual Meeting of the SNE and the international issue, which covers the last activities of the Spanish industry in international projects. Both first are bilingual issues (Spanish-English), whereas the international edition is published completely in English. Besides its diffusion through all the members of the SNE, the Magazine is distributed, in the national scope, to companies and organisms related to the nuclear power, universities, research centers, representatives of the Central, Autonomic and Local Administrations, mass media and communication professionals. It is also sent to the utilities and research centers in Europe, United States, South America and Asia

    Crystal structure of cobalt hydroxide carbonate Co2CO3(OH)(2): density functional theory and X-ray diffraction investigation

    Get PDF
    The cobalt carbonate hydroxide Co2CO3(OH)2 is a technologically important solid which is used as a precursor for the synthesis of cobalt oxides in a wide range of applications. It also has relevance as a potential immobilizer of the toxic element cobalt in the natural environment, but its detailed crystal structure is so far unknown. The structure of Co2CO3(OH)2 has now been investigated using density functional theory (DFT) simulations and powder X-ray diffraction (PXRD) measurements on samples synthesized via deposition from aqueous solution. Two possible monoclinic phases are considered, with closely related but symmetrically different crystal structures, based on those of the minerals malachite [Cu2CO3(OH)2] and rosasite [Cu1.5Zn0.5CO3(OH)2], as well as an orthorhombic phase that can be seen as a common parent structure for the two monoclinic phases, and a triclinic phase with the structure of the mineral kolwezite [Cu1.34Co0.66CO3(OH)2]. The DFT simulations predict that the rosasite-like and malachite-like phases are two different local minima of the potential energy landscape for Co2CO3(OH)2 and are practically degenerate in energy, while the orthorhombic and triclinic structures are unstable and experience barrierless transformations to the malachite phase upon relaxation. The best fit to the PXRD data is obtained using a rosasite model [monoclinic with space group P1121/n and cell parameters a = 3.1408 (4) Å, b = 12.2914 (17) Å, c = 9.3311 (16) Å and γ = 82.299 (16)°]. However, some features of the PXRD pattern are still not well accounted for by this refinement and the residual parameters are relatively poor. The relationship between the rosasite and malachite phases of Co2CO3(OH)2 is discussed and it is shown that they can be seen as polytypes. Based on the similar calculated stabilities of these two polytypes, it is speculated that some level of stacking disorder could account for the poor fit of the PXRD data. The possibility that Co2CO3(OH)2 could crystallize, under different growth conditions, as either rosasite or malachite, or even as a stacking-disordered phase intermediate between the two, requires further investigation

    The maize ALDH protein superfamily: linking structural features to functional specificities

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The completion of maize genome sequencing has resulted in the identification of a large number of uncharacterized genes. Gene annotation and functional characterization of gene products are important to uncover novel protein functionality.</p> <p>Results</p> <p>In this paper, we identify, and annotate members of all the maize aldehyde dehydrogenase (ALDH) gene superfamily according to the revised nomenclature criteria developed by ALDH Gene Nomenclature Committee (AGNC). The maize genome contains 24 unique <it>ALDH </it>sequences encoding members of ten ALDH protein families including the previously identified male fertility restoration <it>RF2A </it>gene, which encodes a member of mitochondrial class 2 ALDHs. Using computational modeling analysis we report here the identification, the physico-chemical properties, and the amino acid residue analysis of a novel tunnel like cavity exclusively found in the maize sterility restorer protein, RF2A/ALDH2B2 by which this protein is suggested to bind variably long chain molecular ligands and/or potentially harmful molecules.</p> <p>Conclusions</p> <p>Our finding indicates that maize ALDH superfamily is the most expanded of plant <it>ALDHs </it>ever characterized, and the mitochondrial maize RF2A/ALDH2B2 is the only plant ALDH that harbors a newly defined pocket/cavity with suggested functional specificity.</p

    Ionoluminescence on α-quartz: mechanisms and modeling

    Get PDF
    Ionoluminescence of α - quartz exhibits two dominant emission bands peaking at 1.9 eV. (NBOHCs) and 2.7 eV (STEs. The evolution of the red emission yield does not show a correlation with the concentrations of neither the NBOHC nor with that of other color centers. The blue emission yield closely follows the amorphization kinetics independently measured by RBS/C spectrometry. A simple theoretical model has been proposed; it assumes that the formation and recombination of STEs are the primary event and both, the light emissions and the lattice structural damage are a consequence this phenomenon. The model leads to several simple mathematical equations that can be used to simulate the IL yields and provide a reasonable fit to experimental kinetic data
    corecore