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Abstract   

 

This review catalogues recent advances in knowledge on venoms as standalone therapeutic 

agents or as blueprints for drug design, with an emphasis on venom-derived compounds that affects 

the immune system. We discuss venoms and venom-derived compounds that affect total immune 

cell numbers, immune cell proliferation, immune cell migration, immune cell phenotype and 

cytokine secretion. Identifying novel compounds that ‘tune’ the system, up-regulating the immune 

response during infectious disease and cancer and down-regulating the immune response during 

autoimmunity, will greatly expand the tool kit of human immunotherapeutics. Targeting these 

pathways may also open therapeutic options that alleviate symptoms of envenomation. Finally, 

combining recent advances in venomics with progress in low cost, high-throughput screening 

platforms will no doubt yield hundreds of prototype immune modulating compounds in the coming 

years.  

 

Highlights 

• Up to date review of venom and venom-derived compounds involved in immune 

modulation. 

• Catalog of FDA approved venom-derived therapeutics. 

• Mechanisms of immune modulation by snake, scorpion, bee and sea anemone secretions. 

• Avenues for future translation of venom-derived immune modulators.  
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1. Introduction 

There are approximately 8.7 million different species on Earth, (Mora et al., 2011) many of 

which produce venoms that have been refined over 600 million years of evolution for optimal 

potency and selectivity (Mauri et al., 2017). Animal venoms have been used to treat various 

diseases by many cultures for millennia. In mithridatism practice, individuals regularly exposed 

themselves to small amounts of venom until immunity developed (Valle et al., 2012). In Chinese 

traditional medicine, venom from the glands of Bufo bufo gargarizans was used for treating 

infection and inflammation (Meng et al., 2009; Qi et al., 2014).   

Venom is a complex mixture of peptides, proteins, enzymes, salts, and non-protein 

constituents. In terms of numbers of species, there are currently 600 leech species (Sket and 

Trontelj, 2008), 800 tick species (Cabezas-Cruz and Valdes, 2014), 3,000 snake species (Wagstaff 

et al., 2006), 700 cone snail species (Puillandre et al., 2014), 1,100 bat species (Jan et al., 2012), 

2,000 scorpion species (Cao et al., 2014), 10,000 cnidarians species (Cegolon et al., 2013) and 

46,000 spider species (World_Spider_Catalog, 2017), although not all these species are venomous 

or dangerous to humans. Other venomous animal include centipedes, scorpions, octopus, sea 

anemones and fish (Fry et al., 2009). Advances in proteomic, genomic and transcriptomic platforms 

are rapidly defining animal venom complexity (termed venomics) and are helping facilitate the 

translation of venom-derived compounds to novel therapeutics (Haney et al., 2014; Safavi-Hemami 

et al., 2014; Undheim et al., 2013). To date, six venom-derived drugs have been approved by FDA 

(Table 1) and many others are in preclinical development or clinical trials (King, 2011). The 

majority of venoms investigated thus far have been derived from snakes, due to the large amounts 

of venom these species produce for research (King, 2011). However, it should be noted that the 

venom yield is higher in captive snakes compared to the wild snakes and the amount of venom can 
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be different depending on the type of bite, specifically a hunting or defensive bite (Mirtschin et al., 

2006). Venoms and venom-derived compounds are known to activate or inhibit the immune 

response and synthetic venom-derived peptides are capable of modulating the human immune 

system. For example, the ShK peptide from the venom of sea anemone inhibits the Kv1.3 ion 

channel in T effector memory (TEM) cells, producing decreased cell proliferation and suppression of 

IL-2 production (Beeton et al., 2005). Furthermore, a derivative of ShK (dalazatide) recently 

completed a successful Phase I clinical trial in psoriasis patients (Tarcha et al., 2017).  

The systematic study of the venom components and their interaction with the immune 

system may reveal novel therapeutics for a plethora of human diseases and therapeutics against 

envenomation symptoms. Venoms are engaged by the immune system and a response is generated 

to counterbalance their effects. This recognition is chiefly mediated by inflammation combined with 

the release of anti-inflammatory mediators in order to maintain homeostasis (Farsky et al., 2005; 

Leon et al., 2011; Petricevich, 2010). Crude venom and venom-derived compounds from spider, 

snake, scorpion and bee venom trigger inflammation (de Lima and Brochetto-Braga, 2003; Farsky 

et al., 2005; Petricevich, 2010; Rahmani et al., 2014). Inflammation refers to the complex reaction 

to harmful or noxious stimuli, including vascular changes, cell recruitment and cytokine release. 

The clinical signs of inflammation include redness, pain, heat, swelling and loss of function. It is 

also one of the steps in healing (Voronov et al., 1999) . The immune system has evolved for 

approximately 1,000 million years as a defensive system to protect the host (Buchmann, 2014). 

Initially, innate or natural immunity protects the body with a non-specific and fast response 

regulated through two lines of defense. The first line is comprised of physical and chemical barriers 

including skin, mucosa, cilia, tears, sweat, urine and bacterial flora. When the first defense line falls 

the second line is activated that includes the inflammatory response. Here diverse cell types are 
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recruited (i.e. mast cells, neutrophils and eosinophils) and other chemical barriers such as the 

complement cascade are activated. The adaptive response can also be activated to generate 

immunological memory. Adaptive immunity is chiefly composed of T cells and B cells. T cells 

require antigen presentation by antigen presenting cells (APCs) via the Major Histocompatibility 

Complex (MHC). When APCs present antigen to T cells they become activated and secrete 

cytokines. B cells produce antibodies and plasma cells, the mature form of B cells, belong to the 

humoral immunity arm (Cota and Midwinter; Warrington et al., 2011). This review catalogues the 

potential of venom and their components as drugs or drug scaffolds, focusing on their potential as 

novel modulators of these immune cells (Figure 1). 
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2. The immune response to venom 

2.1 Snake venom and immune modulation 

Snake venom is synthetized by glands under the eye and they comprise a cluster of proteins 

that are determined by diet, geography (Daltry et al., 1996), age and gender (Woltering, 2012). 

Snake venom proteins are mixed with other components such as enzymes, amino acids, 

carbohydrates, lipids, amines and metal components (i.e. Zn+, Mg+, K+, Ca+ and Na+). Snake 

envenomation is a significant public health burden in tropics with over five million bites annually 

according to the World Health Organization (WHO) (Ahmed et al., 2008; Chippaux, 1998).  

Post envenomation, venom components generate an immune response (Leon et al., 2011). 

Both the innate and adaptive immune arms then attempt to neutralize the venom components. The 

innate immune response commences first and triggers a non-specific inflammatory cascade 

mediated by neutrophils, eosinophils, basophils and macrophages that phagocyte antigen and 

release cytokines (Nicholson, 2016). Mast cells release histamine to expand the blood vessels 

enhancing cell recrutiment and migration. Leukocytes and mast cells produce prostaglandin D2 

(PGD2) that vasodilates and permeabilizes vessels. Prostaglandins also stimulate nerve endings 

causing pain (Ricciotti and FitzGerald, 2011; Urb and Sheppard, 2012). Bradykinins are released 

that modify cell junctions allowing neutrophils to migrate to the site of injury (Golias et al., 2007; 

Sukriti et al., 2014). Nitric oxide (NO) is a gas produced by endothelial cells that functions as a 

signaling molecule. NO is involved in the relaxation of blood vessels and can perform mediator 

activities in immune cells such as macrophages, neutrophils, APCs and T cells (Coleman, 2001). 

Snake venom is known to induce these mediators after envenomation. For example, the venom of 

Bothrops erythromelas induces NO production in murine splenocytes (Luna et al., 2011) and the 
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venom from Bothrops jararacussu enhances neutrophil chemotaxis (Wanderley et al., 2014). Snake 

envenomation can cause an increase of neutrophils and lymphocyte counts and one study found that 

an elevated neutrophil/lymphocyte ratio correlated with longer periods of hospitalization (Elbey et 

al., 2017), with selective proliferation likely due snake-derivied L-amino acid oxidases (Pontes et 

al., 2016; Wei et al., 2009). Snake venom can induce systemic and local inflammation and it is well 

documented that the genus Bothrops can induce severe inflammation. In a murine model, the snake 

venom from Bothrops asper enhanced the production of IL-6, TNFα and eicosanoids (Zamuner et 

al., 2005) and venom-derived phospholipase A2s (PLA2s) improved phagocytic activity of 

macrophages in vitro (Rueda et al., 2013). 

When the inflammatory response is generated by external dangers the complement system 

activates a sequence of proteins that induces cell lysis and antigen presentation to the adaptive 

immune system. The activation of complement is part of the innate immune response and includes 

more than 30 proteins (Sarma and Ward, 2011). There are three biochemical pathways; the classic 

pathway, the alternative pathway and lectin pathway (Sarma and Ward, 2011). The main role of the 

complement system is to amplify the immune response through the stimulation of phagocytosis and 

cell killing (Sarma and Ward, 2011). Venom from Bothrops jararacussu and Bothrops pirajai can 

activate the classic and lectin pathways (Ayres et al., 2015). Venom from the Elapidae family 

Micrurus genus can also activate a specific complement cascade that induces B cell and T cell 

function (Tanaka et al., 2012). A P-I metalloproteinase derived from the venom of Bothrops pirajai 

can activate complement proteins that induce mast cells to produce histamine, enhancing 

phagocytosis and enhancing immune cell migration (Pidde-Queiroz et al., 2013). Similarly, venom 

from Daboia Russelii can activate complement proteins and induce IL-6 and IL-10 (Stone et al., 

2013). Conversely, a P-III metalloproteinase from Naja naja atra venom is considered an 
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anticomplement molecule (Sun and Bao, 2010). Another study found that Naja naja atra venom 

enhanced innate and humoral immune responses while inhibiting CD4+ and CD8+ T cell 

proliferation in response to mitogen (Kou et al., 2014). Naja naja atra venom also induced 

production of IFNγ and IL-4 and inhibited IL-17 production. Mice injected with Crotalus durissus 

terrificus venom showed increased plasma levels of IL-4, IL-5, IL-6, TNFα, IL-10 and NO 

(Hernandez Cruz et al., 2008) and decreased phagocytosis by neutrophils (Lima et al., 2012). A L-

amino acid oxidase from Agkistrodon blomhoffii ussurensis venom induced IL-2, IL-6 and IL-12 

from primary human monocytes and T cells (Wei et al., 2007)  and a PLA2 from Bothrops leucurus 

venom induced IL-1β, IL-6, IL-12p40 and TNFα from primary human mononuclear cells (Nunes et 

al., 2011). Snake venom can also suppress the immune system with Naja kaouthia venom able to 

protect against induced arthritis in rats (Gomes et al., 2010). 

2.2 Scorpion venom and immune modulation 

Scorpions are arthropods that have evolved for >400 million years (Ma et al., 2012) and 

Buthidae is the family with medical significance (Smith et al., 2011). Scorpion venom is comprised 

of proteins, enzymes, peptides, amino acids, carbohydrates, inorganic salts, lipids and amines 

(Quintero-Hernández et al., 2013) and shares similarities with tick and spider venom (Cordeiro et 

al., 2015). Scorpion venom is also rich in neurotoxins that can cause alterations in the central 

nervous system (Watt and Simard, 1984). Scorpion envenomation is a significant public health 

burden in several tropical and subtropical countries such as Brazil, (Furtado Sda et al., 2016)  

Mexico, (Isbister  and Bawaskar 2014) and Iran (Jalali and Rahim, 2014). In addition, over one 

million cases are reported globally every year (Isbister  and Bawaskar 2014). Clinical symptoms in 

envenomed patients include sweating, hypertension, nausea, extreme pain, vomiting, tachycardia 

and convulsions (Isbister  and Bawaskar 2014) and envenomation can induce a systemic 
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inflammatory response syndrome, a result of abnormal cytokine production (Voronov et al., 1999) . 

Scorpion venom is known to interact with Na+, K+, Ca+ and Cl- ion channels (Quintero-Hernández 

et al., 2013).  

Previous studies have shown that the main cytokines released in response to scorpion 

envenomation are IL-1, IL-6 and TNFα (Fukuhara et al., 2003; Jalali et al., 2011). One study 

showed that systemic IL-6 plays an important role in scorpion envenomation (Sofer et al., 1996). In 

another scorpion envenomation study, there was an increase of systemic IL-6, soluble IL-6 receptor, 

TNFα, and RANTES, with high levels correlating with fatal outcomes (Abdel-Haleem et al., 2006). 

Venom from Androctus australis hector, Centruroides noxius and Tityus serrulatus can initiate 

systemic IL-1 release in humans, triggering a complex cascade of other inflammatory/regulatory 

cytokines including IL-6, IL-10 and TNFα (Petricevich, 2010). Another study showed that Tityus 

serrulatus envenomation initiated systemic release of IL-1, IL-6, IL-8, TNFα and IL-10 (Fukuhara 

et al., 2003).  

Cytokines can be released at different time points depending on the cytokine and the 

stimulus (Sullivan et al., 2000). Experiments performed on rats have shown that the plasma 

cytokines IL-1, IL-6 and TNFα peak three hours post injection of Mesobuthus eupeus venom and 

that antivenom can dampen the inflammatory response (Razi Jalali et al., 2015). The scorpion 

venom of Tityus serrulatus and its fractions were tested in a murine macrophage cell line pretreated 

with the mitogen lipopolysaccharide (LPS). Crude venom and two fractions augmented TNFα, IL-6 

and NO release. In contrast, a separate fraction inhibited the release of TNFα and IL-6 and induced 

IL-10 suggesting anti-inflammatory activity (Zoccal et al., 2011). The venom of Androctonus 

crassicauda is known to enhance IL-12 production in human monocytes (Saadi et al., 2015). IL-12 

is a pleiotropic cytokine driving T helper 1 (Th1) differentiation, IFNγ production, and T cell 
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proliferation (Miles et al., 2015; Saadi et al., 2015). T cells are central for anti-pathogen and anti-

cancer immunity and their dysfunction underlies autoimmunity (Miles et al., 2011). Additionally, 

the venom of the Hemiscorpius lepturus induces IL-12 release from human monocytes in vitro 

(Hadaddezfuli et al., 2015) and a fraction from Tityus serrulatus venom induced IL-1, IL-6, TNFα 

and IL-10 from murine monocytes in vitro (Petricevich et al., 2007). Venoms can also interfere with 

immune cell proliferation. The venom of Tityus serrulatus increases IL-6 secretion in PBMC and 

inhibits proliferation in T cells activated by mitogen (Casella-Martins et al., 2015). 

The recognition of external threat is performed by Toll-like receptors (TLRs) which are 

membrane-spanning proteins in the innate immune system, mainly expressed in macrophages and 

dendritic cells (DCs) (Kawai and Akira, 2010). TLRs are able to recognize ligands from microbes 

(bacteria, viruses and fungi) and then activate immune responses (Kawai and Akira, 2010). Ten 

TLRs have been identified in humans and TLR agonists induce activation and maturation of the 

immune system (Kawai and Akira, 2010).Venoms are known to engage the innate immune system 

including TLRs. For example, crude Tityus serrulatus venom and a venom fraction are sensed by 

murine TLR2 and TLR4 and induce the NF-κB and MAPK signaling pathways in macrophages 

resulting in release of IL-6, TNFα, PGE2 and LTB4 (Zoccal et al., 2014). Tityus serrulatus venom 

fractions have also been observed to modulate APC phenotype and function (Petricevich et al., 

2008).  

The interaction between venom-derived compounds and ion channels and has been well 

studied (King, 2011). Venom-derived peptides are highly selective for these targets, and they have 

been described as promising candidates for new therapeutic approaches and drug development 

(Bagal et al., 2013). Ion channels, specifically K+ channels, are involved in T cell activation and are 

a chief target for immunomodulation. Other lineages also express K+ channels (DCs, monocytes, 
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and macrophages) (Zhao et al., 2015). Scorpion venom and its components can manipulate K+ 

channels for immune modulation (Hmed et al., 2013; Petricevich et al., 2007). For example, several 

scorpion peptides are known to inhibit K+ ion channels (Dutertre and Lewis, 2010; Swartz, 2013) 

including Margatoxin (MgTX) peptide from the venom of Centruroides margaritatus. MgTX can 

inhibit Kv 1.3 channels expressed by T cells and B cells (Bartok et al., 2014; Garcia-Calvo et al., 

1993). A second example is Kaliotoxin (KTx) peptide from the venom of Androctonus 

mauretanicus mauretanicus which can inhibit both Ca+ and K+ channels (Crest et al., 1992). 

2.3 Bee Venom and immune modulation  

The venom of Apis mellifera also has applications for immune modulation. 50-60% of the 

dry venom compises a single melittin peptide (Raghuraman and Chattopadhyay, 2007) and 2-3% of 

the dry venom comprises the apamin peptide (Gmachl and Kreil, 1995). Bee venom also contains 

enzymes such as hyaluronidase, PLA2 and histamine (Hwang et al., 2015).  

DCs are the chief lineage for antigen presentation and they initiate both naïve and memory T 

cell responses (Randolph et al., 2005). Immature DCs are able to digest antigens by endocytosis, 

micropinocytosis and phagocytosis and, once they uptake antigen, DC migrate to lymph nodes 

where they mature and encounter T cells (Randolph et al., 2005). DCs express well known surface 

markers and costimulatory molecules that increase in expression during maturation (CD40, CD80, 

CD83 and CD86) and a mature DC phenotype correlates directly with potent T cell responses 

(Hubo et al., 2013). PLA2 from bee venom can enhance the maturation of DC and PLA2, in 

combination with TNFα and IL-1β, can induce the upregulation of costimulatory molecules CD83, 

CD86, both important for T cell stimulation (Aerts-Toegaert et al., 2007; Jeannin et al., 2000; Van 

Kaer, 2015). Immune cells express classic antigen presenting molecules MHC class I and class II 
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but can also express non-classical molecules including CD1 (Rossjohn et al., 2015). Bee venom 

PLA2 can activate human T cells via CD1 molecules (Bourgeois et al., 2015) and can also induce a 

Th2 response via the release of IL-33 (Palm et al., 2013), a cytokine common in the skin and 

intestine (Miller, 2011). Thus, bee venom is a potent immune modulator and it has been used for a 

over a hundred years in autoimmune diseases such as rheumatoid arthritis and allergic disorders like 

asthma (Pak, 2016). Bee venom is known to induce T regulatory (Treg) cells (Park et al., 2015), an 

important regulatory lineage that corrects erroneous activities of other T cell subsets. Treg cells 

produce TGFβ and IL-10 that suppress the immune system and therefore reduce autoimmunity, 

inflammation and allergy (Wan and Flavell, 2007). Bee venom is known to induce Treg populations 

effectively and therapeutic application decreases inflammation of the bronchi in a murine asthma 

model (Choi et al., 2013).  

2.4 Sea anemone toxin and immune modulation 

A toxin rather than a venom, the ShK peptide from derived from the Stoichactis helianthus 

anemone (Pennington et al., 2012) shows promise as a selective immune suppressor (Norton et al., 

2004). Analogs of the toxin have shown similar activities and modes of action (Lanigan et al., 

2001). The anemone produces the toxin for protection against predators. Autoimmunity is the 

failure of the immune system to differentiate external threats from healthy operations resulting in 

unintended tissue damage. Most autoimmune diseases have no cures and researchers are actively 

exploring natural sources for novel therapeutics (Smallwood et al., 2017). The ShK peptide is 

known to block Kv1.3 channel found on the surface of TEM cells, which are central to the damage 

cascade in autoimmunity (Beeton et al., 2005). The Dalazatide peptide recently underwent clinical 

trials in psoriasis and the patients showed an improvement of this condition. The clinical trial data 

has now been published (Tarcha et al., 2017). 
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3. Conclusions 

Recent advances in omics technologies paired with advances in synthetic peptide production 

and rapid recombinant expression (cell-free systems) is leading to an explosion in basic and applied 

venomics. Indeed, an estimated 20 million venom-derived compounds are thought to remain 

unexplored in nature (Escoubas and King, 2009). Combining advances in venomics with progress in 

low cost, high-throughput screening platforms will no doubt yield hundreds of prototype 

compounds applicable to the ~10,000 diseases known to medicine (WHO). At present, six venom-

derived drugs have been FDA approved with many more in preclinical development and in clinical 

trials. Current research shows that venom has the capacity to induce potent effects on the immune 

response. These include customizer compounds that tune immune cell numbers, phenotype and 

function. For instance, snake and bee venom compounds that regulate immune cell subsets numbers 

and cell trafficking would be useful across autoimmunity, infectious disease and cancer. Snake 

venom compounds that induce IL-2 and IFNγ would be useful in the emerging field of cancer 

immunotherapy and snake venom compounds that augment humoral immunity might be useful as 

adjuvants for antibody-based vaccines. Scorpion venom compounds that induce IL-12 would be 

useful for DC-based vaccines and snake and scorpion venom compounds that induce IL-10 might 

be useful in autoimmune disorders. Snake and scorpion venom compounds that selectively shut off 

T cell and B cell function would also be useful in autoimmune disorders and transplant medicine. 

Additionally, targeting these immune pathways may also open new therapeutic options that help 

alleviate envenomation symptoms associated with immune dysfunction. With these examples in 

mind, it is likely that venom-derived immune drug development is still in its infancy and these data 

emphasize the importance of preserving biodiversity to sustain future discoveries. 
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Table 1. FDA approved therapeutics from venom-derived proteins  

*Bydureon is the long-action mode and derived of Byetta®. The administration of these drugs is in combination with other Diabetes Type 2 

medications. Adapted from (King, 2011). 

 

 

 

 

 

 

 

 

 

 

 

 
Name 

 
Active Ingredients  

 
Indication and Mechanism of Action 

 
Route  
 

 
Year 

 
Derived from 

 Prialt® Ziconotide 
SNX-111 
Non-opioid and 
analgesic 
medication 

Severe and Chronic Pain with 
Neuropathic Origin 
The obstruction of the ion channel by the 
chemical composition of the drug impedes 
the secretion of neurotransmisors, 
blocking the signal of pain to the brain. 

Intrathecal administration 2004 Cone snail 
Conus magus 

Byetta® Exenatide Synthetic Diabetes Type 2 
Increases the release of glucose-dependent 
insulin by the stimulation of pancreatic 
beta-cells. Delays gastric emptying. 

Subcutaneous administration 2005 Gila Monster 
Heloderma suspectum 

*Bydureon® Exenatide Synthetic 
 

Subcutaneous administration 2012 Gila Monster 
Heloderma suspectum 

Angiomax® Bivalirudin Anticoagulant 
Inhibits clot formation, interacts with 
thrombin in cascade coagulation. 
 

Intravenous administration 
 

2000 Medicinal Leech 
Hirudo medicinalis 

Capoten® Captopril Hypertension 
Interfering in the transformation between 
angiotensin I and Angiotensin II by the 
inhibition of angiotensin converting 
enzyme (ACE).  

Oral, tablet 1981 Viper Snake 
Bothrops jararaca 

Aggrastat® 
 

Tirofiban 
Hidrochloride 

Inhibitor of platelet aggregation  
This drug binds to the main platelet 
surface receptor (GP IIb/IIIa).   

Intravenous administration 1999 Viper Snake 
African saw-scaled 

 Integrilin® Eptifibatide Antiplatelet Drug 
Reduces the binding of fibrinogen von 
Willebrand factor and ligands to GP 
IIb/IIIa. 

Intravenous administration 1998 Viper Snake 
Sistrurus miliarius 
barbouri 
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Figure 1. Immune pathways modulated by venom 

 

Figure 1. Immune pathways modulated by venom. The innate (blue) and adaptive (red) immune 

arms can be modulated by crude venom and venom components. Cells at the junction of the innate 

and adaptive immune arms, including DCs and APCs (black), can also be modulated by venom and 

venom components. The ability to selectively target each of these subsystems using synthetically-

derived venom components will open novel immunotherapies across infectious disease, cancer and 

autoimmunity.     


