6,749 research outputs found
Towards more Challenging Problems for Ontology Matching Tools
We motivate the need for challenging problems in the evaluation of ontology matching tools. To address this need, we propose mapping sets between well-known biomedical ontologies that are based on the UMLS Metathesaurus. These mappings could be used as a basis for a new track in future OAEI campaigns (http://oaei.ontologymatching.org/).

Los hongos comestibles silvestres como categoria de desarrollo. Vinculaciones entre turismo y alimentos en espacios forestales del Estado de MĂ©xico
TESIS PARA OBTENER EL GRADO DE DOCTORA EN CIENCIAS AGROPECUARIAS Y RECURSOS NATURALES OTORGADO POR EL INSTITUTO DE CIENCIAS AGROPECUARIAS Y RURALES (ICAR) UAEMA partir de las transformaciones socioeconĂłmicas del medio rural, surgen nuevas estrategias para reinterpretar su potencial productivo en el mundo contemporáneo. Entre ellas destaca en diferentes paĂses incluido Mexico, la inserciĂłn del turismo en el espacio rural con una tendencia hacia la gestiĂłn forestal sostenible, que contempla a los hongos comestibles silvestres como elementos del patrimonio biocultural, cuya importancia les confiere la capacidad de ser diversificados en una amplia gama de productos y servicios, a partir del micoturismo. En este sentido y debido a la falta de investigaciones en esta lĂnea, surge el interĂ©s de construir conocimientos que giren en torno a esta tipologĂa turĂstica y todo lo que ello implica, derivando en la integraciĂłn de la presente tesis doctoral por artĂculos especializados, desarrollada en dos etapas: revisiĂłn de literatura y el estudio de casos
Probability and Common-Sense: Tandem Towards Robust Robotic Object Recognition in Ambient Assisted Living
The suitable operation of mobile robots when providing Ambient Assisted Living (AAL) services calls for robust object recognition capabilities. Probabilistic Graphical Models (PGMs) have become the de-facto choice in recognition systems aiming to e ciently exploit contextual relations among objects, also dealing with the uncertainty inherent to the robot workspace. However, these models can perform in an inco herent way when operating in a long-term fashion out of the laboratory, e.g. while recognizing objects in peculiar con gurations or belonging to new types. In this work we propose a recognition system that resorts to PGMs and common-sense knowledge, represented in the form of an ontology, to detect those inconsistencies and learn from them. The utilization of the ontology carries additional advantages, e.g. the possibility to verbalize the robot's knowledge. A primary demonstration of the system capabilities has been carried out with very promising results.Universidad de Málaga. Campus de Excelencia Internacional AndalucĂa Tech
OLT: A Toolkit for Object Labeling Applied to Robotic RGB-D Datasets
In this work we present the Object Labeling Toolkit
(OLT), a set of software components publicly available for
helping in the management and labeling of sequential RGB-D
observations collected by a mobile robot. Such a robot can be
equipped with an arbitrary number of RGB-D devices, possibly
integrating other sensors (e.g. odometry, 2D laser scanners,
etc.). OLT first merges the robot observations to generate a
3D reconstruction of the scene from which object segmentation
and labeling is conveniently accomplished. The annotated labels
are automatically propagated by the toolkit to each RGB-D
observation in the collected sequence, providing a dense labeling
of both intensity and depth images. The resulting objects’ labels
can be exploited for many robotic oriented applications, including
high-level decision making, semantic mapping, or contextual
object recognition. Software components within OLT are highly
customizable and expandable, facilitating the integration of
already-developed algorithms. To illustrate the toolkit suitability,
we describe its application to robotic RGB-D sequences taken in
a home environment.Universidad de Málaga. Campus de Excelencia Internacional AndalucĂa Tech. Spanish grant pro-
gram FPU-MICINN 2010 and the Spanish projects TAROTH:
New developments toward a Robot at Home (DPI2011-25483)
and PROMOVE: Advances in mobile robotics for promoting
independent life of elders (DPI2014-55826-R
Experiences on a motivational learning approach for robotics in undergraduate courses
This paper presents an educational experience carried out in robotics undergraduate courses from two
different degrees: Computer Science and Industrial Engineering, having students with diverse
capabilities and motivations. The experience compares two learning strategies for the practical
lessons of such courses: one relies on code snippets in Matlab to cope with typical robotic problems
like robot motion, localization, and mapping, while the second strategy opts for using the ROS
framework for the development of algorithms facing a competitive challenge, e.g. exploration
algorithms. The obtained students’ opinions were instructive, reporting, for example, that although they
consider harder to master ROS when compared to Matlab, it might be more useful in their (robotic
related) professional careers, which enhanced their disposition to study it. They also considered that
the challenge-exercises, in addition to motivate them, helped to develop their skills as engineers to a
greater extent than the skeleton-code based ones. These and other conclusions will be useful in
posterior courses to boost the interest and motivation of the students.Universidad de Málaga. Campus de Excelencia Internacional AndalucĂa Tech
UPGMpp: a Software Library for Contextual Object Recognition
Object recognition is a cornerstone task towards the scene
understanding problem. Recent works in the field boost their perfor-
mance by incorporating contextual information to the traditional use
of the objects’ geometry and/or appearance. These contextual cues are
usually modeled through Conditional Random Fields (CRFs), a partic-
ular type of undirected Probabilistic Graphical Model (PGM), and are
exploited by means of probabilistic inference methods. In this work we
present the Undirected Probabilistic Graphical Models in C++ library
(UPGMpp), an open source solution for representing, training, and per-
forming inference over undirected PGMs in general, and CRFs in par-
ticular. The UPGMpp library supposes a reliable and comprehensive
workbench for recognition systems exploiting contextual information, in-
cluding a variety of inference methods based on local search, graph cuts,
and message passing approaches. This paper illustrates the virtues of the
library, i.e. it is efficient, comprehensive, versatile, and easy to use, by
presenting a use-case applied to the object recognition problem in home
scenes from the challenging NYU2 dataset.Universidad de Málaga. Campus de Excelencia Internacional AndalucĂa Tech. Spanish grant program FPU-MICINN 2010
and the Spanish projects “TAROTH: New developments toward a robot at
home” (Ref. DPI2011-25483) and “PROMOVE: Advances in mobile robotics
for promoting independent life of elders” (Ref. DPI2014-55826-R
An evaluation of plume tracking as a strategy for gas source localization in turbulent wind flows
Gas source localization is likely the most direct application of a mobile robot endowed with gas sensing capabilities. Multiple algorithms have been proposed to locate the gas source within a known environment, ranging from bio-inspired to probabilistic ones. However, their application to real-world conditions still remains a major issue due to the great difficulties those scenarios bring, among others, the common presence of obstacles which hamper the movement of the robot and notably ncrease the complexity of the gas dispersion. In this work, we consider a plume tracking algorithm based on the well-known silkworm moth strategy and analyze its performance when facing
different realistic environments characterized by the presence of
obstacles and turbulent wind flows. We rely on computational fluid dynamics and the open source gas dispersion simulator GADEN to generate realistic gas distributions in scenarios where the presence of obstacles breaks down the ideal downwind plume. We first propose some modifications to the original silkworm moth algorithm in order to deal with the presence of obstacles in the environment (avoiding collisions) and then analyze its performance within four challenging environments.Universidad de Málaga. Campus de Excelencia Internacional AndalucĂa Tech. Proyecto de excelencia de la Junata de Andalucia TEP2012-53
- …